cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A109998 Non-Cunningham primes: primes isolated from any Cunningham chain under any iteration of 2p+-1 or (p+-1)/2.

Original entry on oeis.org

17, 43, 67, 71, 101, 103, 109, 127, 137, 149, 151, 163, 181, 197, 223, 241, 257, 269, 283, 311, 317, 349, 353, 373, 389, 401, 409, 433, 449, 461, 463, 487, 521, 523, 557, 569, 571, 599, 617, 631, 643, 647, 677, 701, 709, 739, 751, 769, 773, 787, 797, 821
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 01 2005

Keywords

Comments

The condition that neither 2p - 1 nor 2p + 1 be prime is equivalent to ((p-1) mod 3 = 0) or ((p+1) mod 3 = 0). For example, the prime p = 2^607 - 1 is not in this sequence because p + 1 mod 3 = 2. - Washington Bomfim, Oct 30 2009

Examples

			a(1) = 17 is here because 17 * 2 + 1 = 35, 17 * 2 - 1 = 33; (17+1)/2 = 9, (17-1)/2 = 8: four composite numbers.
		

Crossrefs

Programs

  • Mathematica
    nonCunninghamPrimes = {}; Do[p = Prime[n]; If[!PrimeQ[2p - 1] && !PrimeQ[2p + 1] && !PrimeQ[(p - 1)/2] && !PrimeQ[(p + 1)/2], AppendTo[nonCunninghamPrimes, p]], {n, 6!}]; nonCunninghamPrimes (* Vladimir Joseph Stephan Orlovsky, Mar 22 2009 *)

Extensions

Corrected and extended by Ray Chandler, Sep 02 2005
Replaced link to cached arXiv URL with link to the abstract - R. J. Mathar, Mar 01 2010

A195685 Primes p for which tau(2p-1) = tau(2p+1) = 4.

Original entry on oeis.org

17, 43, 47, 71, 101, 107, 109, 151, 197, 223, 317, 349, 461, 521, 569, 631, 673, 701, 821, 881, 919, 947, 971, 991, 1051, 1091, 1109, 1153, 1181, 1217, 1231, 1259, 1321, 1361, 1367, 1549, 1693, 1801, 1847, 1933, 1951, 1979, 2143, 2207, 2267, 2297, 2441, 2801
Offset: 1

Views

Author

Timothy L. Tiffin, Sep 22 2011

Keywords

Comments

Sequence terms are a subset of those listed in A086006 and A068497.
The numbers 2p-1, 2p, 2p+1 form a run (indeed, a maximal run) of three consecutive integers each with four positive divisors. The first two examples are 33, 34, 35 and 85, 86, 87. A039833 gives the first number in these maximal 3-integer runs. - Timothy L. Tiffin, Jul 05 2016

Examples

			tau(2*17-1) = tau(33) = tau(3*11) = 4 = tau(5*7) = tau(35) = tau(2*17+1) and tau(2*43-1) = tau(85) = tau(5*17) = 4 = tau(3*29) = tau(87) = tau(2*43+1). - _Timothy L. Tiffin_, Jul 05 2016
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    q:= p-> isprime(p) and tau(2*p-1)=4 and tau(2*p+1)=4:
    select(q, [$1..3000])[];  # Alois P. Heinz, Apr 18 2019
  • Mathematica
    Select[Prime[Range[500]], DivisorSigma[0, 2 # - 1] == DivisorSigma[0, 2 # + 1] == 4 &] (* T. D. Noe, Sep 22 2011 *)
    Select[Mean[#]/2&/@SequencePosition[DivisorSigma[0,Range[6000]],{4,,4}],PrimeQ] (* _Harvey P. Dale, Nov 26 2021 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if ((numdiv(2*p-1) == 4) && (numdiv(2*p+1) == 4), print1(p, ", "))); \\ Michel Marcus, Jul 06 2016

Formula

a(n) = A248201(n)/2. - Torlach Rush, Jun 25 2021

A109927 First primes p connected to two primes either by 2p+1 or 2p-1 upward [downward (p-1)/2 or (p+1)/2].

Original entry on oeis.org

3, 5, 11, 23, 37, 83, 157, 179, 359, 661, 719, 877, 997, 1019, 1237, 1439, 1657, 2039, 2063, 2137, 2459, 2557, 2819, 2903, 2963, 3023, 3061, 3623, 3779, 3803, 3863, 4177, 4261, 4357, 4621, 4919, 5399, 5581, 5639, 6037, 6121, 6217, 6361, 6899, 6983, 7079
Offset: 1

Views

Author

Alexandre Wajnberg, Aug 31 2005

Keywords

Comments

These primes may be part of Cunningham chains longer than three terms. It seems the two operators are never mixed, except for 3, 5 and 7: -for 3, we have: 2 through <2p-1> -> 3 through <2p+1> -> 7 -for 5: 3 <2p-1> -> 5 <2p+1> -> 11 -for 7: 3 <2p+1> -> 7 <2p-1> -> 13
For p > 7, such a mixed chain with p in the middle is impossible because the number 3 would be a nontrivial factor of either the smallest or the largest term. - Jeppe Stig Nielsen, May 05 2019
Primes (excluding 2 and 7) that divide more than one semiprime triangular number A068443. - Jeppe Stig Nielsen, May 05 2019
The disjoint union of A059455 and A109835. - Jeppe Stig Nielsen, May 05 2019

Examples

			a(3)=11 is here because 5->11->23 through <2p+1>;
a(4)=23 because 11->23->47 through <2p+1>;
a(5)=37 because 19->37->73 through <2p-1>.
		

Crossrefs

Programs

  • PARI
    forprime(p=3,10^6,if(p%3==2,isprime((p-1)/2)&&isprime(2*p+1),isprime((p+1)/2)&&isprime(2*p-1))&&print1(p,", ")) \\ Jeppe Stig Nielsen, May 05 2019

A269668 Smallest k >= 0 such that neither (k + 1)*n - k nor (k + 1)*n + k is prime.

Original entry on oeis.org

0, 2, 3, 0, 5, 0, 7, 0, 0, 0, 7, 0, 1, 0, 0, 0, 1, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 10, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 3
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 03 2016

Keywords

Comments

Numbers n such that a(n) = m: 2, 31, 41, 131, 157, ... (for m = 2);
3, 53, 83, 97, 139, ... (for m = 3); 19, 23, 79, 191, ... (for m = 4), ...

Examples

			For n = 2, k = 0: (0 + 1)*2 - 0 = 2 is prime and (0 + 1)*2 + 0 = 2 is prime; for n = 2, k = 1: (1 + 1)*2 - 1 = 3 is prime and (1 + 1)*2 + 1 = 5 is prime; for n = 2, k = 2: (2 + 1)*2 - 2 = 4 is composite and (2 + 1)*2 + 2 = 6 is composite, so a(2) = 2.
		

Crossrefs

Cf. A018252 (a(n) = 0), A068497 (a(n) = 1).

Programs

  • Mathematica
    Table[SelectFirst[Range[0, 120], And[! PrimeQ[n (# + 1) - #], ! PrimeQ[n (# + 1) + #]] &], {n, 120}] (* Michael De Vlieger, Mar 04 2016, Version 10 *)
  • PARI
    A269668(n) = {my(k=0); while (isprime((k+1)*n-k) || isprime((k+1)*n+k), k++); k; } \\ Michel Marcus, Apr 04 2016, corrected by Antti Karttunen, Dec 27 2018

Extensions

Definition corrected by Michael De Vlieger, Mar 04 2016

A172056 Primes p such that 2*p+-1 and 2*p+-3 are all composites.

Original entry on oeis.org

59, 61, 103, 109, 149, 151, 163, 257, 313, 389, 401, 449, 479, 541, 569, 571, 673, 677, 709, 733, 769, 821, 823, 839, 857, 883, 919, 947, 971, 983, 1061, 1087, 1093, 1097, 1129, 1151, 1163, 1181, 1249, 1283, 1301, 1319, 1321, 1381, 1433, 1489, 1493, 1549
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 24 2010

Keywords

Examples

			a(1)=59 because 2*59-1=117, 2*59+1=119, 2*59-3=115, 2*59+3=121 are all composites.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Union[PrimeQ[{2n+1,2n-1,2n+3,2n-3}]]=={False}; Select[Prime[Range[250]],okQ] (* Harvey P. Dale, Feb 07 2010 *)
    Select[Prime[Range[300]],AllTrue[2#+{1,3,-1,-3},CompositeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 20 2015 *)

Extensions

Corrected and extended by Harvey P. Dale, Feb 07 2010
Showing 1-5 of 5 results.