cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A104709 Triangle read by rows: T(n,k) = Sum_{j=0..n} 2^(n-j)*binomial(j,k) for n >= 0 and 0 <= k <= n; also, Riordan array (1/((1-x)*(1-2*x)), x/(1-x)).

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 15, 11, 5, 1, 31, 26, 16, 6, 1, 63, 57, 42, 22, 7, 1, 127, 120, 99, 64, 29, 8, 1, 255, 247, 219, 163, 93, 37, 9, 1, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1, 2047, 2036, 1981, 1816, 1486, 1024, 562, 232, 67
Offset: 0

Views

Author

Gary W. Adamson, Mar 19 2005

Keywords

Comments

This array (A104709) is the mirror of the fission, A054143, of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence (q(n,x): n >= 0) given by q(n,x) = x^n + x^(n-1) + ... + x + 1. See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011
The elements of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A110813(n,k) assuming the same offset in both triangles. - R. J. Mathar, Mar 15 2013
From Paul Curtz, Jun 12 2019: (Start)
Numerators of the triangle [Curtz, page 15, triangle (E)]:
1/2;
3/4, 1/4;
7/8, 4/8, 1/8;
15/16, 11/16, 5/16, 1/16;
31/32, 26/31, 16/32, 6/32, 1/32;
63/64, 57/64, 42/64, 22/64, 7/64, 1/64;
...
Denominators - Numerators: Triangle A054143.
1;
1, 3;
1, 4, 7;
1, 5, 11, 15;
...
(E) is a transform which accelerates the convergence of series.
For log(2) = 1 - 1/2 + 1/3 - 1/4 ... = 0.6931..., we have
1*(1/2) = 1/2,
1*(3/4) - (1/2)*(1/4) = 5/8,
1*(7/8) - (1/2)*(4/8) + (1/3)*(1/8) = 2/3,
1*(15/16) - (1/2)*(11/16) + (1/3)*(5/16) - (1/4)*1/16 = 131/192,
...
This is A068566/A068565. (End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
   1;
   3,  1;
   7,  4,  1;
  15, 11,  5,  1;
  31, 26, 16,  6,  1;
  63, 57, 42, 22,  7,  1;
  ...
		

Crossrefs

Programs

  • Maple
    A104709_row := proc(n) add(add(binomial(n,n-i)*x^(n-k-1),i=0..k),k=0..n-1);
    coeffs(sort(%)) end; seq(print(A104709_row(n)),n=1..6); # Peter Luschny, Sep 29 2011
  • Mathematica
    z = 10;
    p[n_, x_] := (x + 1)^n;
    q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1;
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A054143 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]] (* A104709 *)
    (* Clark Kimberling, Aug 07 2011 *)

Formula

Begin with A055248 as a triangle, delete leftmost column.
The Riordan array factors as (1/(1-2*x), x)*(1/(1-x), x/(1-x)) - the sequence array for 2^n times Pascal's triangle. - Paul Barry, Aug 05 2005
T(n,k) = Sum_{j=0..n-k} C(n-j, k)*2^j. - Paul Barry, Jan 12 2006
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 2*T(n-2,k) - 2*T(n-2,k-1), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 30 2013
Working with an offset of 0, we have exp(x) * (e.g.f. for row n) = (e.g.f. for diagonal n). For example, for n = 3 we have exp(x)*(15 + 11*x + 5*x^2/2! + x^3/3!) = 15 + 26*x + 42*x^2/2! + 64*x^3/3! + 93*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), x/(1 - x)). - Peter Bala, Dec 21 2014
From Petros Hadjicostas, Jun 05 2020: (Start)
Bivariate o.g.f.: A(x,y) = Sum_{n,k >= 0} T(n,k)*x^n*y^k = 1/(1 - 3*x - x*y + 2*x^2 + 2*x^2*y) = 1/((1 - 2*x)*(1 - x*(y+1))).
The o.g.f. of the n-th row is (2^(n+1) - (1 + y)^(n+1))/(1 - y).
Let B(x,y) be the bivariate o.g.f. of triangular array A054143. Because A054143 is the mirror image of the current array, we have A(x,y) = B(x*y, 1/y) and B(x,y) = A(x*y, 1/y). This makes it easy to identify lower diagonals of the array.
For example, if we want to identify the second lower diagonal of the array (i.e., 7, 11, 16, 22, ...), we take the 2nd derivative of B(x,y) with respect to y, set y = 0, and divide by 2!. (Note that columns in A054143 start at k = 0.) We get the g.f. x^2*(7 - 10*x + 4*x^2)/(1 - x)^3.
It is then easy to derive that T(n,n-2) = A000124(n+1) = (n+1)*(n+2)/2 + 1 for n >= 2 (by ignoring the first three terms of A000124). Of course, in the current case, it is much easier to use the formula for T(n,k) to find T(n,n-2). (End)
T(n,0) = 2^(n+1) - 1 for n >= 0; T(n,k) = T(n-1,k) + T(n-1,k-1) for 1 <= k <= n. - Peter Bala, Jan 30 2023
T(n,1) = 2^(n+1) - n - 2 = A000295(n+1) for n >= 1. - Bernard Schott, Feb 22 2023

Extensions

Name edited and offset changed by Petros Hadjicostas, Jun 04 2020

A068566 Numerator of Sum_{k=1..n} 1/(k * 2^k).

Original entry on oeis.org

1, 5, 2, 131, 661, 1327, 1163, 148969, 447047, 44711, 983705, 7869871, 102309709, 204620705, 31972079, 32739453941, 556571077357, 556571247527, 10574855234543, 42299423848079, 42299425233749, 84598851790183
Offset: 1

Views

Author

Benoit Cloitre, Mar 25 2002

Keywords

Comments

Sum_{k>=1} 1/(k * 2^k) = log(2).
From Paul Curtz, Jun 11 2019: (Start)
(Link) page 9:
T0 = 1/2 = 1/2
T1 = 1/2 + 1/8 = 5/8
T2 = 5/8 + 1/24 = 2/3
T3 = 2/3 + 1/64 = 131/192
T4 = 131/192 + 1/160 = 661/960
(T5 = 661/960 + 1/384 = 1327/1920)
... .
a(n)/A068565(n) is the first and the third column.
The denominators of the second column are essentially A036289, A097064 and A134401. (End)

Crossrefs

Programs

  • GAP
    List([1..30], n-> NumeratorRat( Sum([1..n], k-> 1/(2^k*k)) ) ) # G. C. Greubel, Jun 30 2019
  • Magma
    [Numerator( (&+[1/(2^k*k): k in [1..n]]) ): n in [1..30]]; // G. C. Greubel, Jun 30 2019
    
  • Maple
    map(numer, ListTools:-PartialSums([seq(1/k/2^k,k=1..100)])); # Robert Israel, Jul 10 2015
  • Mathematica
    Numerator[Accumulate[Table[1/(k 2^k),{k,30}]]] (* Harvey P. Dale, May 11 2013 *)
    a[n_]:=Log[2]-Hypergeometric2F1[1+n,1+n,2+n,-1]/(1+n);
    Numerator[Table[Simplify[a[n]],{n,1,30}]] (* Gerry Martens, Aug 06 2015 *)
  • PARI
    vector(30, n, numerator(sum(k=1,n, 1/(k * 2^k)))) \\ Michel Marcus, Aug 07 2015
    
  • Sage
    [numerator( sum(1/(2^k*k) for k in (1..n)) ) for n in (1..30)] # G. C. Greubel, Jun 30 2019
    

Formula

From Peter Bala, Feb 05 2024: (Start)
Integral_{x = 0..1} x^n/(1 + x)^(n+1) dx = log(2) - Sum_{k = 1..n} 1/(k * 2^k).
Hence a(n) = the numerator of Integral_{x = 0..1} ((1 + x)^n - x^n)/(1 + x)^(n+1) dx.
Integral_{x = 0..1/2} x^n/(1 - x) dx = Integral_{x >= 2} 1/(x^(n+2) - x^(n+1)) dx = log(2) - a(n)/A068565(n). (End)
Showing 1-2 of 2 results.