A068781
Lesser of two consecutive numbers each divisible by a square.
Original entry on oeis.org
8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1
44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
(4,8)
(9,12,16,18,20,24)
(25,27)
(28,32,36,40,44)
(45,48)
(49)
(50,52,54,56,60,63)
(64,68,72,75)
(76,80)
(81,84,88,90,92,96,98)
(99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
A053797 gives lengths of runs of nonsquarefree numbers, firsts
A373199.
-
a068781 n = a068781_list !! (n-1)
a068781_list = filter ((== 0) . a261869) [1..]
-- Reinhard Zumkeller, Sep 04 2015
-
Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
-
isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021
A068782
Lesser of two consecutive numbers each divisible by a fourth power.
Original entry on oeis.org
80, 624, 1215, 1376, 2400, 2511, 2672, 3807, 3968, 4374, 5103, 5264, 6399, 6560, 7695, 7856, 8991, 9152, 9375, 10287, 10448, 10624, 11583, 11744, 12879, 13040, 14175, 14336, 14640, 15471, 15632, 16767, 16928, 18063, 18224, 19359, 19375
Offset: 1
80 is a term as 80 and 81 both are divisible by a fourth power, 2^4 and 3^4 respectively.
-
Select[ Range[2, 25000], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 3 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 3 &]
-
has(n)=vecmax(factor(n)[,2])>3
is(n)=has(n+1)&&has(n) \\ Charles R Greathouse IV, Dec 19 2018
-
list(lim)=my(v=List(),x=1); forfactored(n=81,lim\1+1, if(vecmax(n[2][,2])>3, if(x,listput(v,n[1]-1),x=1),x=0)); Vec(v) \\ Charles R Greathouse IV, Dec 19 2018
A068783
Lesser of two consecutive numbers each divisible by a fifth power.
Original entry on oeis.org
1215, 6560, 8991, 9375, 14336, 16767, 22112, 24543, 29888, 32319, 37664, 40095, 45440, 47871, 53216, 55647, 60992, 63423, 68768, 71199, 76544, 78975, 84320, 86751, 90624, 92096, 94527, 99872, 102303, 107648, 109375, 110079, 115424
Offset: 1
-
Select[ Range[2, 250000], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 4 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 4 &]
SequencePosition[Table[If[Max[FactorInteger[n][[All,2]]]>4,1,0],{n,120000}],{1,1}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 25 2018 *)
A068784
Lesser of two consecutive numbers each divisible by a sixth power.
Original entry on oeis.org
16767, 29888, 63423, 76544, 109375, 110079, 123200, 156735, 169856, 203391, 216512, 250047, 263168, 296703, 309824, 343359, 356480, 390015, 403136, 436671, 449792, 483327, 496448, 529983, 543104, 576639, 589760, 623295, 636416, 669951
Offset: 1
A373882
Number of lattice points inside or on the 4-dimensional hypersphere x^2 + y^2 + z^2 + u^2 = 10^n.
Original entry on oeis.org
9, 569, 49689, 4937225, 493490641, 49348095737, 4934805110729, 493480252693889, 49348022079085897, 4934802199975704129, 493480220066583590433, 49348022005552308828457, 4934802200546833521392241, 493480220054489318828539601, 49348022005446802425711456713, 4934802200544679211736756034457
Offset: 0
-
b(k, n) = my(q='q+O('q^(n+1))); polcoef((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^k/(1-q), n);
a(n) = b(4, 10^n);
-
from math import isqrt
def A373882(n): return 1+((-(s:=isqrt(a:=10**n))**2*(s+1)+sum((q:=a//k)*((k<<1)+q+1) for k in range(1,s+1))&-1)<<2)+(((t:=isqrt(m:=a>>2))**2*(t+1)-sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))&-1)<<4) # Chai Wah Wu, Jun 21 2024
A373881
Number of lattice points inside the ball x^2 + y^2 + z^2 <= 10^n.
Original entry on oeis.org
7, 147, 4169, 132451, 4187857, 132459677, 4188781437, 132461190717, 4188790061109, 132461176423805, 4188790203273025, 132461176878317635
Offset: 0
-
b(k, n) = my(q='q+O('q^(n+1))); polcoef((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^k/(1-q), n);
a(n) = b(3, 10^n);
A373883
Number of lattice points inside or on the 5-dimensional hypersphere x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 = 10^n.
Original entry on oeis.org
11, 1903, 532509, 166711479, 52646439609, 16645828150193, 5263797438037625, 1664556518763850069, 526378909839312477785, 166455624316184206850205, 52637890147973140623040513, 16645562406807092052281075983, 5263789013922669372094091725857
Offset: 0
-
b(k, n) = my(q='q+O('q^(n+1))); polcoef((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^k/(1-q), n);
a(n) = b(5, 10^n);
A373884
Number of lattice points inside or on the 6-dimensional hypersphere x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 = 10^n.
Original entry on oeis.org
13, 5757, 5260181, 5178103157, 5168770118857, 5167819662055085, 5167723229551614933, 5167713844375355566137, 5167712884142309619400885, 5167712790787647771419572729
Offset: 0
-
b(k, n) = my(q='q+O('q^(n+1))); polcoef((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^k/(1-q), n);
a(n) = b(6, 10^n);
A373885
Number of lattice points inside or on the 7-dimensional hypersphere x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 = 10^n.
Original entry on oeis.org
15, 16859, 48218513, 149732983675, 472579187185537, 1494134816265585397, 4724776275561584896709, 14941025134674593046033085
Offset: 0
-
b(k, n) = my(q='q+O('q^(n+1))); polcoef((eta(q^2)^5/(eta(q)^2*eta(q^4)^2))^k/(1-q), n);
a(n) = b(7, 10^n);
A373896
Number of lattice points inside or on the 8-dimensional hypersphere x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2 + x_6^2 + x_7^2 + x_8^2 = 10^n.
Original entry on oeis.org
17, 47921, 415055025, 4068011664081, 40596481219349025, 405880555110153633585, 4058721509888208894731345, 40587130610718907618215585345, 405871222004868007901459647593809, 4058712135741827985063748936303681217
Offset: 0
-
a008457(n) = sumdiv(n, d, (-1)^(n-d)*d^3);
a341397(n) = 1+16*sum(k=1, n, a008457(k));
a(n) = a341397(10^n);
Showing 1-10 of 10 results.
Comments