cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A096172 Largest prime factor of n^4 + 1.

Original entry on oeis.org

2, 17, 41, 257, 313, 1297, 1201, 241, 193, 137, 7321, 233, 14281, 937, 1489, 65537, 41761, 929, 3833, 160001, 97241, 3209, 139921, 331777, 11489, 26881, 6481, 614657, 353641, 3361, 1129, 61681, 6113, 1336337, 750313, 98801, 10529, 50857, 1156721
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Comments

Mabkhout shows that a(n) >= 137 for n > 3. - Charles R Greathouse IV, Apr 07 2014

Examples

			a(1)=2 because 1^4 + 1 = 2;
a(2)=17: 2^4 + 1 = 17;
a(8)=241: 8^4 + 1 = 4097 = 17*241.
		

References

  • Mustapha Mabkhout, Minoration de P(x^4+1), Rendiconti del Seminario della Facoltà di Scienze dell'Università di Cagliari 63:2 (1993), pp. 135-148.

Crossrefs

Programs

Formula

a(n) = A006530(1+n^4) = A014442(n^2). - R. J. Mathar, Jan 28 2017
From Amiram Eldar, Oct 28 2024: (Start)
a(n) > 113 for n > 3 (Mureddu, 1986-1987).
a(n) >= 233 for n >= 11 (Luca, 2004). (End)

A069208 a(n) = Sum_{ d divides n } phi(n)/phi(d).

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 7, 11, 10, 10, 11, 15, 13, 14, 15, 23, 17, 20, 19, 25, 21, 22, 23, 33, 26, 26, 31, 35, 29, 30, 31, 47, 33, 34, 35, 50, 37, 38, 39, 55, 41, 42, 43, 55, 50, 46, 47, 69, 50, 52, 51, 65, 53, 62, 55, 77, 57, 58, 59, 75, 61, 62, 70, 95, 65, 66, 67, 85, 69, 70, 71
Offset: 1

Views

Author

Vladeta Jovovic, Apr 10 2002

Keywords

Comments

a(n) = n iff n is squarefree number (cf. A005117).
Conjecture: Let (f(n)), n > 0, be a multiplicative sequence. Then holds:
(1) p(f; n) = Sum_{d powerful number (A001694) dividing n} f(d) is multiplicative;
(2) p(f; n) equals inverse Moebius transform of A112526(n) * f(n). - Werner Schulte, Jan 23 2025
a(n) is also the number of conjugacy classes of the holomorph of the cyclic group of order n. Corollary: Let Rn be the dihedral quandle of order n. Then a(n) is the number of isomorphism classes of virtual quandles whose underlying quandle is isomorphic to Rn. - Luc Ta, Jun 16 2025

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[n]*Total[1/EulerPhi@Divisors@n], {n, 71}] (* Ivan Neretin, Sep 20 2017 *)
    f[p_, e_] := (p^(e + 1) - p^e + p^(e - 1) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 14 2022 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n)/eulerphi(d)) \\ Michel Marcus, Jun 17 2013
    
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, (f[k,1]^(f[k,2]-1) + (f[k,1]-1)*f[k,1]^f[k,2]-1) / (f[k,1]-1)); \\ Daniel Suteu, Nov 04 2018

Formula

Multiplicative with a(p^e) = (p^(e+1)-p^e+p^(e-1)-1)/(p-1).
a(n) = phi(n) * Sum_{k=1..n} 1/phi(n / gcd(n, k))^2. - Daniel Suteu, Nov 04 2018
a(n) = Sum_{k=1..n, gcd(n,k) = 1} tau(gcd(n,k-1)). - Ilya Gutkovskiy, Sep 24 2021
From Werner Schulte, Feb 27 2022: (Start)
Dirichlet convolution of A005361 and A000010.
Dirichlet convolution of A112526 and A000027.
Dirichlet g.f.: Sum_{n>0} a(n) / n^s = zeta(s-1) * zeta(2*s) * zeta(3*s) / zeta(6*s). (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 15015/(2764*Pi^2) = 0.550411... . - Amiram Eldar, Oct 22 2022
a(n) = Sum_{d powerful number (A001694) dividing n} n / d. - Werner Schulte, Jan 23 2025 (see Golomb link at A001694)

A096171 Numbers k such that k^4+1 is an odd semiprime.

Original entry on oeis.org

8, 10, 12, 14, 18, 22, 26, 30, 32, 36, 38, 40, 42, 50, 52, 58, 62, 68, 72, 78, 84, 86, 92, 94, 98, 100, 102, 108, 112, 114, 116, 120, 122, 124, 128, 130, 138, 146, 148, 152, 158, 162, 166, 170, 172, 176, 184, 186, 200, 212, 214, 216, 218, 222, 224, 226, 234, 250, 252
Offset: 1

Views

Author

Hugo Pfoertner, Jun 19 2004

Keywords

Examples

			a(1)=8 because 8^4 + 1 = 4097 = 17*241;
a(2)=10: 10^4 + 1 = 10001 = 73*137.
		

Crossrefs

Cf. A000068 (n^4+1 is prime), A037896 (primes of the form k^4+1), A096169 ((n^4+1)/2 is prime), A069170 (primes of the form (k^4+1)/2), A096172 (largest prime factor of n^4+1), A046388.

Programs

  • Mathematica
    Select[Range[2,300,2],PrimeOmega[#^4+1]==2&] (* Harvey P. Dale, Dec 25 2021 *)
  • PARI
    isA096171(n) = {local(m);m=n^4+1;(m%2==1)&&(bigomega(m)==2)} \\ Michael B. Porter, Feb 02 2010
Showing 1-3 of 3 results.