A075474 Duplicate of A069225.
1, 65, 2771, 10920, 158804, 2413091, 16636354, 117650080
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
r[n_]:=FromDigits[Reverse[IntegerDigits[n]]];Do[If[DivisorSigma[1,n]- r[DivisorSigma[1,n]]==EulerPhi[n],Print[n]],{n,15000000}]
n=59815: phi(n) = 40992, phi(n+1) = 29904 = rev(phi(n)).
Select[Range[60000], IntegerReverse[EulerPhi[# + 1]] == EulerPhi[#] &] (* Giovanni Resta, Aug 12 2019 *)
isok(n) = eulerphi(n) == fromdigits(Vecrev(digits(eulerphi(n+1)))); \\ Michel Marcus, Aug 12 2019
phi(2) = 1 and sigma(2) - 2 = 1. phi(735) = 336 and sigma(735) - 735 = 633. phi(7665) = 3456 and sigma(7665) - 7665 = 6543.
with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q) local n; for n from 1 to q do if phi(n)=T(sigma(n)-n) then print(n); fi; od; end: P(10^9);
Select[Range[10^6], EulerPhi[#] == FromDigits[Reverse[IntegerDigits[DivisorSigma[1, #] - #]]] &] (* Michael De Vlieger, Jan 29 2015 *)
rev(n) = subst(Polrev(digits(n)), x, 10); isok(n) = rev(sigma(n)-n) == eulerphi(n); \\ Michel Marcus, Jan 29 2015
phi(14) = 6, Rev(6) = 6 and sigma(6) = 12; sigma(14) = 24, Rev(24) = 42 and sigma(42) = 12.
with(numtheory): T:=proc(w) local x, y, z; x:=0; y:=w; for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end: P:=proc(q) local a, b, k; global n; for n from 1 to q do if sigma(T(phi(n)))=phi(T(sigma(n))) then print(n); fi; od; end: P(10^12);
Select[Range[400000],DivisorSigma[1,IntegerReverse[EulerPhi[#]]] == EulerPhi[ IntegerReverse[ DivisorSigma[ 1,#]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 15 2017 *)
sigma(2) - 2 = 1; rev(1) = 1 = phi(2). sigma(735) - 735 = 633; rev(633) = 336 = phi(735).
with(numtheory):T:=proc(w) local x,y,z; x:=w; y:=0; for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end: P:=proc(q) local n; for n from 1 to q do if T(phi(n))=sigma(n)-n then print(n); fi; od; end: P(10^7);
Select[Range[564*10^4],IntegerReverse[EulerPhi[#]]==DivisorSigma[1,#]-#&] (* The program generates the first 12 terms of the sequence. *) (* Harvey P. Dale, Jul 03 2024 *)
rev(n) = subst(Polrev(digits(n)), x, 10); isok(n) = (sigma(n)-n) == rev(eulerphi(n)); \\ Michel Marcus, Jan 29 2015
n=5989003: sigma(n) = 5994000 and n - phi(n) = 4995
Do[ If[ FromDigits[ Reverse[ IntegerDigits[ DivisorSigma[1, n]]]] == n - EulerPhi[n], Print[n]], {n, 10^8}] (* Robert G. Wilson v, Oct 23 2004 *)
Comments