A077358 Duplicate of A069686.
127, 131, 137, 139, 151, 157, 173, 179, 223, 227, 229, 233, 239, 251, 257, 271, 277
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
edpQ[n_]:=Module[{idn=IntegerDigits[n]},PrimeQ[10idn[[1]]+idn[[-1]]]]; Join[ {2,3,5,7},Select[Prime[Range[200]],edpQ]] (* Harvey P. Dale, Nov 20 2020 *)
{exdigs(n)=local(a,j,d); d=divrem(n,10); a=d[2]; n=d[1]; j=1; while(n>10,d=divrem(n,10); n=d[1]; j=10*j); 10*n+a} forprime(p=1,335,if(isprime(exdigs(p)),print1(p,",")))
139 is a term as 19 and 3 are both primes.
forprime(p=1,1440,if(isprime(indigs(p))&&isprime(exdigs(p)),print1(p,",")))
from sympy import isprime, primerange for p in primerange(100, 1440): if isprime(int(str(p)[1:-1])) and isprime(int(str(p)[0]+str(p)[-1])): print(p) # Jason Yuen, Apr 21 2024
7177 and 10177 are in the sequence because both are emirps, and both become the emirp 17 upon deletion of their first and last digits.
library(gmp); isemirp<-function(x) isprime(x) & (j=paste(rev(unlist(strsplit(as.character(x), split=""))), collapse=""))!=x & isprime(j); no0<-function(s){ while(substr(s,1,1)=="0" & nchar(s)>1) s=substr(s,2,nchar(s)); s}; i=as.bigz(0); y=as.bigz(rep(0, 100)); len=0; while(len<100) if(isemirp((i=nextprime(i)))) if(isemirp(as.bigz(no0(substr(i,2,nchar(as.character(i))-1))))) y[(len=len+1)]=i; as.vector(y)
514 is in the sequence because 51 = 3*17.
Select[Range[600],PrimeOmega[#]==2==PrimeOmega[FromDigits[ Most[ IntegerDigits[ #]]]]&] (* Harvey P. Dale, Oct 02 2014 *) Select[Range[600],PrimeOmega[#]==PrimeOmega[Quotient[#,10]]==2&] (* Harvey P. Dale, Mar 18 2023 *)
list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ From A001358 issemiprime(n) = n>0 && bigomega(n)==2 t=list(1000); for(n=1, #t, if(issemiprime(t[n]\10), print1(t[n],", ")))
249 is in the sequence because 49 = 7*7.
Select[Range[400],PrimeOmega[#]==PrimeOmega[Mod[#,10^(IntegerLength[ #]-1)]] == 2&] (* Harvey P. Dale, Jun 07 2017 *)
list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ From A001358 delleft(a) = my(b, c); b=#Str(a); c=a\(10^(b-1)); a-c*(10^(b-1)) issemiprime(n) = n>0 && bigomega(n)==2 t=list(500); for(n=1, #t, if(issemiprime(delleft(t[n])), print1(t[n],", ")))
eifpQ[n_]:=Module[{idn=IntegerDigits[n]},PrimeQ[FromDigits[{First[ idn], Last[ idn]}]]&&PrimeQ[FromDigits[Rest[Most[idn]]]]]; ndp[pwr_]: = Module[ {p=NextPrime[10^pwr]},While[!eifpQ[p],p=NextPrime[p]];p]; Join[ {0,0}, Table[ndp[i],{i,2,20}]] (* Harvey P. Dale, Jan 03 2015 *)
LastDigit[n_] := n - 10*Floor[n/10]; FirstDigit[n_] := Floor[n/(10^(Ceiling[Log[10, n]] - 1))]; MiddleDigits[n_] := Floor[(n - Floor[n/(10^(Ceiling[Log[10, n]] - 1))]*10^(Ceiling[Log[10, n]] - 1))/10]; IntExtPrimeTest2[n_] := TrueQ[(Boole[PrimeQ[FirstDigit[n]*10 + LastDigit[ n]]] + Boole[PrimeQ[MiddleDigits[n]]] + Boole[PrimeQ[n]]) == 3]; finder[digits_] := (maxj = 10^digits; For[j = maxj, IntExtPrimeTest2[j] == False, j-- ]; j); Table[finder[n], {n, 3, 20}] (* Joshua Albert (jba138(AT)psu.edu), Feb 22 2006 *) eidQ[n_]:=Module[{idn=IntegerDigits[n]},AllTrue[{FromDigits[Join[ {idn[[1]]}, {idn[[-1]]}]],FromDigits[Most[Rest[idn]]]},PrimeQ]]; Join[ {0,0},Table[Module[{np=NextPrime[10^n-1,-1]},While[ !eidQ[np],np = NextPrime[ np,-1]];np],{n,3,18}]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 26 2018 *)
a(0) = 4 because there are 4 ways to concatenate a digit to 0 to produce a prime number: 02, 03, 05, and 07. a(3) = 9 because a digit can be concatenated to 3 in 9 ways to produce a prime number: 03, 13, 23, 43, 53, 73, 83, 31, and 37.
Table[num = IntegerDigits[n]; cnt = 0; Do[If[PrimeQ[FromDigits[Prepend[num, k]]], cnt++], {k, 0, 9}]; Do[If[PrimeQ[FromDigits[Append[num, k]]], cnt++], {k, 0, 9}]; cnt, {n, 0, 86}] (* T. D. Noe, Apr 20 2013 *)
sapply(1:100, function(x) sum(sapply(as.numeric(c(paste0(0:9,x), paste0(x,c(1,3,7,9)))), is_prime ))) # Christian N. K. Anderson, Apr 30 2024
169 = 13^2 is in the sequence because 6 = 2*3.
Select[Range[100,700],PrimeOmega[#]==PrimeOmega[FromDigits[ Rest[ Most[ IntegerDigits[ #]]]]] ==2&] (* Harvey P. Dale, Nov 22 2018 *)
list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ From A001358 delleft(a) = my(b, c); b=#Str(a); c=a\(10^(b-1)); a-c*(10^(b-1)) issemiprime(n) = n>0 && bigomega(n)==2 t=list(700); for(n=1, #t, if(issemiprime(delleft(t[n]\10)), print1(t[n],", ")))
Comments