cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069720 a(n) = 2^(n-1)*binomial(2*n-1, n).

Original entry on oeis.org

1, 6, 40, 280, 2016, 14784, 109824, 823680, 6223360, 47297536, 361181184, 2769055744, 21300428800, 164317593600, 1270722723840, 9848101109760, 76467608616960, 594748067020800, 4632774416793600, 36135640450990080, 282202144474398720, 2206307674981662720, 17266755717247795200
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Comments

Number of rooted unicursal planar maps with n edges (unicursal means that exactly two nodes are of odd valency; there is an Eulerian path).

Crossrefs

First superdiagonal of number array A082137.

Programs

  • Haskell
    a069720 n = (a000079 $ n - 1) * (a001700 $ n - 1)
    -- Reinhard Zumkeller, Jan 15 2015
    
  • Magma
    [2^(n-2)*Binomial(2*n, n): n in [1..25]]; // Vincenzo Librandi, Apr 14 2018
    
  • Maple
    Z:=(1-sqrt(1-2*z))*4^(n-1)/sqrt(1-2*z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=1..20); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Table[2^(n-1) Binomial[2n-1,n],{n,20}] (* Harvey P. Dale, Jan 20 2013 *)
  • PARI
    a(n) = binomial(2*n-1,n)<<(n-1) \\ Charles R Greathouse IV, Feb 06 2017
    
  • SageMath
    def A069720(n): return 2^(n-2)*binomial(2*n, n)
    print([A069720(n) for n in range(1,31)]) # G. C. Greubel, Jan 18 2025

Formula

a(n) = 2^(n-2)*binomial(2*n, n).
G.f.: (1-sqrt(1-8*x))/(4*x*sqrt(1-8*x)) = 2/(sqrt(1-8*x)*(1-sqrt(1-8*x))) - 1/(2*x). - Paul Barry, Sep 06 2004
D-finite with recurrence: n*a(n) - 4*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Apr 01 2012
E.g.f.: a(n) = n! * [x^n] (exp(4*x)*BesselI(0, 4*x) - 1)/4. - Peter Luschny, Aug 25 2012
From Reinhard Zumkeller, Jan 15 2015: (Start)
a(n) = A000079(n-1) * A001700(n-1); for n > 1:
a(n) = 2*A082143(n-1). (End)
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=1} 1/a(n) = 4/7 + 32*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 4/9 + 16*log(2)/27. (End)
a(n) = ((2*n)!/4) * [x^n] (BesselI(0, 2*sqrt(2*x)) - 1). - G. C. Greubel, Jan 18 2025