cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069722 Number of rooted unicursal planar maps with n edges and exactly one vertex of valency 1 (unicursal means that exactly two vertices are of odd valency; there is an Eulerian path).

Original entry on oeis.org

0, 4, 24, 160, 1120, 8064, 59136, 439296, 3294720, 24893440, 189190144, 1444724736, 11076222976, 85201715200, 657270374400, 5082890895360, 39392404439040, 305870434467840, 2378992268083200, 18531097667174400, 144542561803960320, 1128808577897594880
Offset: 1

Views

Author

Valery A. Liskovets, Apr 07 2002

Keywords

Crossrefs

Programs

  • Magma
    [0] cat[2^(n-1)*Binomial(2*n-2, n-1): n in [2..20]]; // Vincenzo Librandi, Nov 17 2011
  • Maple
    Z:=(1-sqrt(1-z))*8^n/sqrt(1-z): Zser:=series(Z, z=0, 32): seq(coeff(Zser, z, n), n=0..19); # Zerinvary Lajos, Jan 01 2007
  • Mathematica
    Join[{0},Table[2^(n-1) Binomial[2n-2,n-1],{n,2,20}]] (* Harvey P. Dale, Nov 16 2011 *)

Formula

a(n) = 2^(n-1)*binomial(2n-2, n-1), n>1.
a(n) = 2*A069723(n), n>1.
G.f. for a(n)^2: 1/AGM(1, (1-64*x)^(1/2)). - Benoit Cloitre, Jan 01 2004
a(n) = A059304(n-1), n>1. [R. J. Mathar, Sep 29 2008]
a(n) ~ 2^(3*n-3)/sqrt(Pi*n). - Vaclav Kotesovec, Sep 28 2019
E.g.f.: x * (exp(4*x) * (BesselI(0,4*x) - BesselI(1,4*x)) - 1). - Ilya Gutkovskiy, Nov 03 2021
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=2} 1/a(n) = 1/7 + 8*arcsin(1/(2*sqrt(2)))/(7*sqrt(7)).
Sum_{n>=2} (-1)^n/a(n) = 1/9 + 4*log(2)/27. (End)