A069735 Number of regular orientable coverings of the Klein bottle with 2n lists.
1, 3, 2, 5, 2, 6, 2, 7, 3, 6, 2, 10, 2, 6, 4, 9, 2, 9, 2, 10, 4, 6, 2, 14, 3, 6, 4, 10, 2, 12, 2, 11, 4, 6, 4, 15, 2, 6, 4, 14, 2, 12, 2, 10, 6, 6, 2, 18, 3, 9, 4, 10, 2, 12, 4, 14, 4, 6, 2, 20, 2, 6, 6, 13, 4, 12, 2, 10, 4, 12, 2, 21, 2, 6, 6, 10, 4, 12, 2, 18, 5, 6, 2, 20, 4, 6, 4, 14, 2, 18
Offset: 1
Examples
x + 3*x^2 + 2*x^3 + 5*x^4 + 2*x^5 + 6*x^6 + 2*x^7 + 7*x^8 + 3*x^9 + 6*x^10 + ...
Links
- Andrey Zabolotskiy, Table of n, a(n) for n = 1..10000
- Valery A. Liskovets and Alexander Mednykh, Number of non-orientable coverings of the Klein bottle, 2002.
- John S. Rutherford, Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type, Acta Cryst. (2009). A65, 156-163. [See Table 1]. - From _N. J. A. Sloane_, Feb 23 2009
Crossrefs
Programs
-
Maple
read("transforms") : nmax := 100 : L := [1,1,seq(0,i=1..nmax)] : MOBIUSi(%) : MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017 with(NumberTheory): seq(tau(n) + `if`(n::odd, 0, tau(n/2)), n=1..100); # Peter Luschny, Mar 19 2021
-
Mathematica
d[n_] := DivisorSigma[0, n]; a[n_] := If[EvenQ[n], d[n] + d[n/2], d[n]]; Array[a, 100] (* Jean-François Alcover, Aug 27 2019 *)
-
PARI
{a(n) = if( n<1, 0, numdiv(n) + if( n%2, 0, numdiv( n / 2)))} /* Michael Somos, Mar 24 2012 */
Formula
Multiplicative with a(2^e)=2e+1 and a(p^e)=e+1 for e>0 and an odd prime p.
a(n) = d(n)+d(n/2) for even n and a(n) = d(n) otherwise where d(n) is the number of divisors of n (A000005).
G.f.: Sum_{k>0} x^k*(1+2*x^k)/(1-x^(2*k)). - Vladeta Jovovic, Dec 16 2002
Dirichlet g.f.: (1+2^(-s))*zeta^2(s) [ Rutherford]. - N. J. A. Sloane, Feb 23 2009
Moebius transform is period 2 sequence [ 1, 2, ...]. - Michael Somos, Mar 24 2012
a(2*n - 1) = A099774(n).
a(n) = Sum_{ m: m^2|n } A304182(n/m^2). - Andrey Zabolotskiy, May 07 2018
Sum_{k=1..n} a(k) ~ 3*n*log(n)/2 + (3*gamma - 3/2 - log(2)/2)*n, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 04 2019
a(n) = 3*tau(n) - tau(2*n). - Ridouane Oudra, Mar 15 2021
Extensions
Corrected by T. D. Noe, Nov 13 2006
Comments