cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069778 q-factorial numbers 3!_q.

Original entry on oeis.org

1, 6, 21, 52, 105, 186, 301, 456, 657, 910, 1221, 1596, 2041, 2562, 3165, 3856, 4641, 5526, 6517, 7620, 8841, 10186, 11661, 13272, 15025, 16926, 18981, 21196, 23577, 26130, 28861, 31776, 34881, 38182, 41685, 45396, 49321, 53466, 57837, 62440, 67281, 72366
Offset: 0

Views

Author

Keywords

Comments

Number of proper n-colorings of the 4-cycle with one vertex color fixed (offset 2). - Michael Somos, Jul 19 2002
n such that x^3 + x^2 + x + n factors over the integers. - James R. Buddenhagen, Apr 19 2005
If Y is a 4-subset of an n-set X then, for n>=5, a(n-5) is the number of 5-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 08 2007
Equals row sums of the Connell (A001614) sequence read as a triangle. - Gary W. Adamson, Sep 01 2008
Binomial transform of 1, 5, 10, 6, 0, 0, 0 (0 continued). - Philippe Deléham, Mar 17 2014
Digital root is A251780. - Peter M. Chema, Jul 11 2016

Examples

			For 2-colorings only 1212 is proper so a(2-2)=1. The proper 3-colorings are: 1212,1313,1213,1312,1232,1323 so a(3-2)=6.
a(0) = 1*1 = 1;
a(1) = 1*1 + 5*1 = 6;
a(2) = 1*1 + 5*2 + 10*1 = 21;
a(3) = 1*1 + 5*3 + 10*3 + 6*1 = 52;
a(4) = 1*1 + 5*4 + 10*6 + 6*4 = 105; etc. - _Philippe Deléham_, Mar 17 2014
		

References

  • T. A. Gulliver, Sequences from Cubes of Integers, Int. Math. Journal, 4 (2003), 439-445.

Crossrefs

Cf. A069777, A069779, A218503, A056108 (first differences).
Cf. A001614. - Gary W. Adamson, Sep 01 2008
Cf. A226449. - Bruno Berselli, Jun 09 2013

Programs

  • Maple
    A069778 := proc(n)
        (n+1)*(n^2+n+1) ;
    end proc: # R. J. Mathar, Aug 24 2013
  • Mathematica
    LinearRecurrence[{4, -6, 4, -1}, {1, 6, 21, 52}, 41] (* or *) Table[(n + 1) (n^2 + n + 1), {n, 0, 41}] (* Harvey P. Dale, Jul 11 2011 *)
    Table[QFactorial[3, n], {n, 0, 41}] (* Arkadiusz Wesolowski, Oct 31 2012 *)
  • PARI
    a(n)=(n+1)*(n^2+n+1)

Formula

a(n) = (n + 1)*(n^2 + n + 1).
a(n) = (n+1)^3-2*T(n) where T(n) =n*(n+1)/2= A000217(n) is the n-th triangular number. - Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 14 2006
a(n) = n^8 mod (n^3+n), with offset 1..a(1)=1. - Gary Detlefs, May 02 2010
a(n) = 4*a(n-1)-6*a(n-2)+ 4*a(n-3)- a(n-4), n>3. - Harvey P. Dale, Jul 11 2011
G.f.: (1+2*x+3*x^2)/(1-x)^4. - Harvey P. Dale, Jul 11 2011
For n>0 a(n) = Sum_{k=A000217(n-1)...A000217(n+1)} k. - J. M. Bergot, Feb 11 2015
E.g.f.: (1 + 5*x + 5*x^2 + x^3)*exp(x). - Ilya Gutkovskiy, Jul 11 2016