cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A251780 Digital root of A069778(n-1) = n^3 - n^2 + 1, n >= 1. Repeat(1, 6, 3, 7, 6, 6, 4, 6, 9).

Original entry on oeis.org

1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9, 1, 6, 3, 7, 6, 6, 4, 6, 9
Offset: 1

Views

Author

Peter M. Chema, Dec 08 2014

Keywords

Comments

Periodic with cycle of 9: {1, 6, 3, 7, 6, 6, 4, 6, 9}.
The decimal expansion of 54588823/333333333 = 0.repeat(163766469).

Examples

			For a(3) = 3 because 3^3 - 3^2 + 3  = 27 - 9 + 3 = 21 with digit sum 3 which is also the digital root of 21.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 6, 3, 7, 6, 6, 4, 6, 9},108] (* Ray Chandler, Jul 25 2016 *)
  • PARI
    DR(n)=s=sumdigits(n);while(s>9,s=sumdigits(s));s
    for(n=1,100,print1(DR(abs(n^2-n-n^3)),", ")) \\ Derek Orr, Dec 30 2014

Formula

a(n) = digital root of n^3 - n^2 + n.

Extensions

More terms from Derek Orr, Dec 30 2014
Edited: name changed; formula, comment and example rewritten; digital root link added. - Wolfdieter Lang, Jan 05 2015

A001614 Connell sequence: 1 odd, 2 even, 3 odd, ...

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 26, 28, 30, 32, 34, 36, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 122
Offset: 1

Views

Author

Keywords

Comments

Next (2n-1) odd numbers alternating with next 2n even numbers. Squares (A000290(n)) occur at the A000217(n)-th entry. - Lekraj Beedassy, Aug 06 2004. - Comment corrected by Daniel Forgues, Jul 18 2009
a(t_n) = a(n(n+1)/2) = n^2 relates squares to triangular numbers. - Daniel Forgues
The natural numbers not included are A118011(n) = 4n - a(n) as n=1,2,3,... - Paul D. Hanna, Apr 10 2006
As a triangle with row sums = A069778 (1, 6, 21, 52, 105, ...): /Q 1;/Q 2, 4;/Q 5, 7, 9;/Q 10, 12, 14, 16;/Q ... . - Gary W. Adamson, Sep 01 2008
The triangle sums, see A180662 for their definitions, link the Connell sequence A001614 as a triangle with six sequences, see the crossrefs. - Johannes W. Meijer, May 20 2011
a(n) = A122797(n) + n - 1. - Reinhard Zumkeller, Feb 12 2012

Examples

			From _Omar E. Pol_, Aug 13 2013: (Start)
Written as a triangle the sequence begins:
   1;
   2,  4;
   5,  7,  9;
  10, 12, 14, 16;
  17, 19, 21, 23, 25;
  26, 28, 30, 32, 34, 36;
  37, 39, 41, 43, 45, 47, 49;
  50, 52, 54, 56, 58, 60, 62, 64;
  65, 67, 69, 71, 73, 75, 77, 79, 81;
  82, 84, 86, 88, 90, 92, 94, 96, 98, 100;
  ...
Right border gives A000290, n >= 1.
(End)
		

References

  • C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 276.
  • C. A. Pickover, The Mathematics of Oz, Chapter 39, Camb. Univ. Press UK 2002.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A117384, A118011 (complement), A118012.
Cf. A069778. - Gary W. Adamson, Sep 01 2008
From Johannes W. Meijer, May 20 2011: (Start)
Triangle columns: A002522, A117950 (n>=1), A117951 (n>=2), A117619 (n>=3), A154533 (n>=5), A000290 (n>=1), A008865 (n>=2), A028347 (n>=3), A028878 (n>=1), A028884 (n>=2), A054569 [T(2*n,n)].
Triangle sums (see the comments): A069778 (Row1), A190716 (Row2), A058187 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Fi1, Fi2, Ze1 and Ze2), A000292 (Related to Kn3, Kn4, Ca3, Ca4, Gi3 and Gi4), A190717 (Related to Ca1, Ca2, Ze3, Ze4), A190718 (Related to Gi1 and Gi2). (End)

Programs

  • Haskell
    a001614 n = a001614_list !! (n-1)
    a001614_list = f 0 0 a057211_list where
       f c z (x:xs) = z' : f x z' xs where z' = z + 1 + 0 ^ abs (x - c)
    -- Reinhard Zumkeller, Dec 30 2011
    
  • Magma
    [2*n-Round(Sqrt(2*n)): n in [1..80]]; // Vincenzo Librandi, Apr 17 2015
    
  • Maple
    A001614:=proc(n): 2*n - floor((1+sqrt(8*n-7))/2) end: seq(A001614(n),n=1..67); # Johannes W. Meijer, May 20 2011
  • Mathematica
    lst={};i=0;For[j=1, j<=4!, a=i+1;b=j;k=0;For[i=a, i<=9!, k++;AppendTo[lst, i];If[k>=b, Break[]];i=i+2];j++ ];lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)
    row[n_] := 2*Range[n+1]+n^2-1; Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Oct 25 2013 *)
  • PARI
    a(n)=2*n - round(sqrt(2*n)) \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from math import isqrt
    def A001614(n): return (m:=n<<1)-(k:=isqrt(m))-int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022

Formula

a(n) = 2*n - floor( (1+ sqrt(8*n-7))/2 ).
a(n) = A005843(n) - A002024(n). - Lekraj Beedassy, Aug 06 2004
a(n) = A118012(A118011(n)). A117384( a(n) ) = n; A117384( 4*n - a(n) ) = n. - Paul D. Hanna, Apr 10 2006
a(1) = 1; then a(n) = a(n-1)+1 if a(n-1) is a square, a(n) = a(n-1)+2 otherwise. For example, a(21)=36 is a square therefore a(22)=36+1=37 which is not a square so a(23)=37+2=39 ... - Benoit Cloitre, Feb 07 2007
T(n,k) = (n-1)^2 + 2*k - 1. - Omar E. Pol, Aug 13 2013
a(n)^2 = a(n*(n+1)/2). - Ivan N. Ianakiev, Aug 15 2013
Let the sequence be written in the form of the triangle in the EXAMPLE section below and let a(n) and a(n+1) belong to the same row of the triangle. Then a(n)*a(n+1) + 1 = a(A000217(A118011(n))) = A000290(A118011(n)). - Ivan N. Ianakiev, Aug 16 2013
a(n) = 2*n-round(sqrt(2*n)). - Gerald Hillier, Apr 15 2015
From Robert Israel, Apr 20 2015 (Start):
G.f.: 2*x/(1-x)^2 - (x/(1-x))*Sum_{n>=0} x^(n*(n+1)/2) = 2*x/(1-x)^2 - (Theta2(0,x^(1/2)))*x^(7/8)/(2*(1-x)) where Theta2 is a Jacobi theta function.
a(n) = 2*n-1 - Sum_{i=0..n-2} A023531(i). (End)
a(n) = 3*n-A014132(n). - Chai Wah Wu, Oct 19 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 16 2001

A069777 Array of q-factorial numbers n!_q, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 21, 4, 1, 1, 1, 120, 315, 52, 5, 1, 1, 1, 720, 9765, 2080, 105, 6, 1, 1, 1, 5040, 615195, 251680, 8925, 186, 7, 1, 1, 1, 40320, 78129765, 91611520, 3043425, 29016, 301, 8, 1, 1
Offset: 0

Views

Author

Keywords

Examples

			Square array begins:
    1,   1,    1,      1,       1,        1,         1, ...
    1,   1,    1,      1,       1,        1,         1, ...
    1,   2,    3,      4,       5,        6,         7, ...
    1,   6,   21,     52,     105,      186,       301, ...
    1,  24,  315,   2080,    8925,    29016,     77959, ...
    1, 120, 9765, 251680, 3043425, 22661496, 121226245, ...
    ...
		

Crossrefs

Rows n=3..5 are A069778, A069779, A218503.
Main diagonal gives A347611.

Programs

  • Maple
    A069777 := proc(n,k) local n1: mul(A104878(n1,k), n1=k..n-1) end: A104878 := proc(n,k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: seq(seq(A069777(n,k), k=0..n), n=0..9); # Johannes W. Meijer, Aug 21 2011
    nmax:=9: T(0,0):=1: for n from 1 to nmax do T(n,0):=1:  T(n,1):= (n-1)! od: for q from 2 to nmax do for n from 0 to nmax do T(n+q,q) := product((q^k - 1)/(q - 1), k= 1..n) od: od: for n from 0 to nmax do seq(T(n,k), k=0..n) od; seq(seq(T(n,k), k=0..n), n=0..nmax); # Johannes W. Meijer, Aug 21 2011
    # alternative Maple program:
    T:= proc(n, k) option remember; `if`(n<2, 1,
          T(n-1, k)*`if`(k=1, n, (k^n-1)/(k-1)))
        end:
    seq(seq(T(d-k, k), k=0..d), d=0..10);  # Alois P. Heinz, Sep 08 2021
  • Mathematica
    (* Returns the rectangular array *) Table[Table[QFactorial[n, q], {q, 0, 6}], {n, 0, 6}] (* Geoffrey Critzer, May 21 2017 *)
  • PARI
    T(n,q)=prod(k=1, n, ((q^k - 1) / (q - 1))) \\ Andrew Howroyd, Feb 19 2018

Formula

T(n,q) = Product_{k=1..n} (q^k - 1) / (q - 1).
T(n,k) = Product_{n1=k..n-1} A104878(n1,k). - Johannes W. Meijer, Aug 21 2011
T(n,k) = Sum_{i>=0} A008302(n,i)*k^i. - Geoffrey Critzer, Feb 26 2025

Extensions

Name edited by Michel Marcus, Sep 08 2021

A081422 Triangle read by rows in which row n consists of the first n+1 n-gonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 51, 1, 6, 15, 28, 45, 66, 91, 1, 7, 18, 34, 55, 81, 112, 148, 1, 8, 21, 40, 65, 96, 133, 176, 225, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Examples

			The array starts
  1  1  3 10 ...
  1  2  6 16 ...
  1  3  9 22 ...
  1  4 12 28 ...
The triangle starts
  1;
  1,  1;
  1,  2,  3;
  1,  3,  6, 10;
  1,  4,  9, 16, 25;
  ...
		

Crossrefs

Antidiagonals are composed of n-gonal numbers.

Programs

  • GAP
    Flat(List([0..10], n-> List([1..n+1], k-> k*((n-2)*k-(n-4))/2 ))); # G. C. Greubel, Aug 14 2019
  • Magma
    [[k*((n-2)*k-(n-4))/2: k in [1..n+1]]: n in [0..10]]; // G. C. Greubel, Oct 13 2018
    
  • Mathematica
    Table[PolygonalNumber[n,i],{n,0,10},{i,n+1}]//Flatten (* Requires Mathematica version 10.4 or later *) (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=1, n+1, print1(k*((n-2)*k-(n-4))/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015
    
  • Sage
    [[k*((n-2)*k -(n-4))/2 for k in (1..n+1)] for n in (0..10)] # G. C. Greubel, Aug 14 2019
    

Formula

Array of coefficients of x in the expansions of T(k, x) = (1 + k*x -(k-2)*x^2)/(1-x)^4, k > -4.
T(n, k) = k*((n-2)*k -(n-4))/2 (see MathWorld link). - Michel Marcus, Jun 22 2015

A226449 a(n) = n*(5*n^2-8*n+5)/2.

Original entry on oeis.org

0, 1, 9, 39, 106, 225, 411, 679, 1044, 1521, 2125, 2871, 3774, 4849, 6111, 7575, 9256, 11169, 13329, 15751, 18450, 21441, 24739, 28359, 32316, 36625, 41301, 46359, 51814, 57681, 63975, 70711, 77904, 85569, 93721, 102375, 111546, 121249, 131499, 142311, 153700
Offset: 0

Views

Author

Bruno Berselli, Jun 07 2013

Keywords

Comments

Sequences of the type b(m)+m*b(m-1), where b is a polygonal number:
A006003(n) = A000217(n) + n*A000217(n-1) (b = triangular numbers);
A069778(n) = A000290(n+1) + (n+1)*A000290(n) (b = square numbers);
A143690(n) = A000326(n+1) + (n+1)*A000326(n) (b = pentagonal numbers);
A212133(n) = A000384(n) + n*A000384(n-1) (b = hexagonal numbers);
a(n) = A000566(n) + n*A000566(n-1) (b = heptagonal numbers);
A226450(n) = A000567(n) + n*A000567(n-1) (b = octagonal numbers);
A226451(n) = A001106(n) + n*A001106(n-1) (b = nonagonal numbers);
A204674(n) = A001107(n+1) + (n+1)*A001107(n) (b = decagonal numbers).

Crossrefs

Programs

  • Magma
    [n*(5*n^2-8*n+5)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,9,39]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Aug 18 2013
    
  • Mathematica
    Table[n (5 n^2 - 8 n + 5)/2, {n, 0, 40}]
    CoefficientList[Series[x (1 + 5 x + 9 x^2)/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,9,39},50] (* Harvey P. Dale, May 19 2017 *)
  • PARI
    a(n)=n*(5*n^2-8*n+5)/2 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: x*(1+5*x+9*x^2)/(1-x)^4.
a(n) - a(-n) = A008531(n) for n>0.

A270867 a(n) = n^3 + 2*n^2 + 4*n + 1.

Original entry on oeis.org

1, 8, 25, 58, 113, 196, 313, 470, 673, 928, 1241, 1618, 2065, 2588, 3193, 3886, 4673, 5560, 6553, 7658, 8881, 10228, 11705, 13318, 15073, 16976, 19033, 21250, 23633, 26188, 28921, 31838, 34945, 38248, 41753, 45466, 49393, 53540, 57913, 62518, 67361, 72448
Offset: 0

Views

Author

Vincenzo Librandi, Apr 01 2016

Keywords

Comments

Numbers of the type (m+1)^3 - (m-1)*m. Similar sequences are: A069778 with the closed form (m+1)^3 - m*(m+1), A152015 with (m+1)^3 - (m+1)*(m+2).

Crossrefs

Programs

  • Magma
    [n^3+2*n^2+4*n+1: n in [0..50]];
    
  • Maple
    A270867:=n->n^3+2*n^2+4*n+1: seq(A270867(n), n=0..100); # Wesley Ivan Hurt, Apr 01 2016
  • Mathematica
    Table[n^3 + 2 n^2 + 4 n + 1, {n, 0, 40}]
  • PARI
    x='x+O('x^99); Vec((1+4*x-x^2+2*x^3)/(1-x)^4) \\ Altug Alkan, Apr 01 2016
    
  • Python
    for i in range(0,100):print(i**3+2*i**2+4*i+1) # Soumil Mandal, Apr 02 2016

Formula

O.g.f.: (1 + 4*x - x^2 + 2*x^3)/(1 - x)^4.
E.g.f.: (1 + 7*x + 5*x^2 + x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = -A270109(-n-1). - Bruno Berselli, Apr 01 2016
a(n+2) - 2*a(n+1) + a(n) = A016957(n+1). - Wesley Ivan Hurt, Apr 02 2016

A153257 a(n) = n^3 - (n+1)^2.

Original entry on oeis.org

-1, -3, -1, 11, 39, 89, 167, 279, 431, 629, 879, 1187, 1559, 2001, 2519, 3119, 3807, 4589, 5471, 6459, 7559, 8777, 10119, 11591, 13199, 14949, 16847, 18899, 21111, 23489, 26039, 28767, 31679, 34781, 38079, 41579, 45287, 49209, 53351, 57719, 62319, 67157, 72239
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^3-(n+1)^2,{n,0,40}] (* Harvey P. Dale, Oct 05 2022 *)
  • PARI
    my(x='x+O('x^43)); Vec((x^3+5*x^2+x-1)/(x-1)^4) \\ Elmo R. Oliveira, Aug 27 2025

Formula

From Elmo R. Oliveira, Aug 27 2025: (Start)
G.f.: (-1 + x + 5*x^2 + x^3)/(1 - x)^4.
E.g.f.: (-1 + x)*(1 + 3*x + x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)

Extensions

More terms from Elmo R. Oliveira, Aug 27 2025

A093966 Array read by antidiagonals: number of {112,221}-avoiding words.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 4, 1, 6, 21, 16, 5, 1, 6, 33, 52, 25, 6, 1, 6, 33, 124, 105, 36, 7, 1, 6, 33, 196, 345, 186, 49, 8, 1, 6, 33, 196, 825, 786, 301, 64, 9, 1, 6, 33, 196, 1305, 2586, 1561, 456, 81, 10, 1, 6, 33, 196, 1305, 6186, 6601, 2808, 657, 100, 11
Offset: 1

Views

Author

Ralf Stephan, Apr 20 2004

Keywords

Comments

A(n,k) is the number of n-long k-ary words that simultaneously avoid the patterns 112 and 221.

Examples

			Array, A(n, k), begins as:
  1,  1,   1,    1,    1,     1,     1 ... 1*A000012(k);
  2,  4,   6,    6,    6,     6,     6 ... 2*A158799(k-1);
  3,  9,  21,   33,   33,    33,    33 ... ;
  4, 16,  52,  124,  196,   196,   196 ... ;
  5, 25, 105,  345,  825,  1305,  1305 ... ;
  6, 36, 186,  786, 2586,  6186,  9786 ... ;
  7, 49, 301, 1561, 6601, 21721, 51961 ... ;
Antidiagonal triangle, T(n, k), begins as:
  1;
  1, 2;
  1, 4,  3;
  1, 6,  9,   4;
  1, 6, 21,  16,    5;
  1, 6, 33,  52,   25,    6;
  1, 6, 33, 124,  105,   36,    7;
  1, 6, 33, 196,  345,  186,   49,   8;
  1, 6, 33, 196,  825,  786,  301,  64,  9;
  1, 6, 33, 196, 1305, 2586, 1561, 456, 81, 10;
		

Crossrefs

Cf. A069778, A093963 (antidiagonal sums), A093964, A093965 (main diagonal).

Programs

  • Mathematica
    A[n_, k_]:= A[n, k]= If[n==1, 1, If[k==1, n, If[2<=kG. C. Greubel, Dec 29 2021 *)
  • PARI
    A(n,k) = if(n >= k+1, sum(j=1, k, j*j!*binomial(k,j)), if(n<2, if(n<1, 0, k), n!*binomial(k,n) + sum(j=1, n-1, j*j!*binomial(k,j))));
    T(n,k) = A(n-k+1, k);
    for(n=1, 15, for(k=1, n, print1(T(n, k), ", ") ) )
    
  • Sage
    @CachedFunction
    def A(n,k):
        if (n==1): return 1
        elif (k==1): return n
        elif (2 <= k < n+1): return factorial(k)*binomial(n,k) + sum( j*factorial(j)*binomial(n,j) for j in (1..k-1) )
        else: return sum( j*factorial(j)*binomial(n,j) for j in (1..n) )
    def T(n,k): return A(k, n-k+1)
    flatten([[T(n,k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Dec 29 2021

Formula

A(n, k) = k!*binomial(n, k) + Sum_{j=1..k-1} j*j!*binomial(n, j), for 2 <= k <= n, otherwise Sum_{j=1..n} j*j!*binomial(n, j), with A(1, k) = 1 and A(n, 1) = n.
From G. C. Greubel, Dec 29 2021: (Start)
T(n, k) = A(k, n-k+1).
Sum_{k=1..n} T(n, k) = A093963(n).
T(n, 1) = 1.
T(n, n) = n.
T(n, n-1) = (n-1)^2.
T(n, n-2) = A069778(n).
T(2*n-1, n) = A093965(n).
T(2*n, n) = A093964(n), for n >= 1. (End)

A069779 q-factorial numbers 4!_q.

Original entry on oeis.org

1, 24, 315, 2080, 8925, 29016, 77959, 182400, 384345, 746200, 1356531, 2336544, 3847285, 6097560, 9352575, 13943296, 20276529, 28845720, 40242475, 55168800, 74450061, 99048664, 130078455, 168819840, 216735625, 275487576, 346953699, 433246240, 536730405, 660043800
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[QFactorial[4, n], {n, 0, 29}] (* Arkadiusz Wesolowski, Nov 01 2012 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,24,315,2080,8925,29016,77959},30] (* Harvey P. Dale, Aug 30 2020 *)

Formula

a(n) = (n + 1)*(n^2 + n + 1)*(n^3 + n^2 + n + 1).
G.f.: (1 + 17*x + 8*x^2*(21 + 43*x) + 5*x^4*(35 + 3*x))/(1 - x)^7. - Arkadiusz Wesolowski, Nov 01 2012

A218503 q-factorial numbers 5!_q.

Original entry on oeis.org

1, 120, 9765, 251680, 3043425, 22661496, 121226245, 510902400, 1799118945, 5507702200, 15072415941, 37630041120, 87029433985, 188664603960, 386925380325, 756298318336, 1417430759745, 2559798038520, 4472991338725, 7589075296800, 12538953723681
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 31 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Table[QFactorial[5, n], {n, 0, 20}]
    Join[{1},With[{f=Times@@Table[Total[n^Range[0,i]],{i,4}]},Table[f,{n,20}]]] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,120,9765,251680,3043425,22661496,121226245,510902400,1799118945,5507702200,15072415941},30] (* Harvey P. Dale, Sep 04 2017 *)

Formula

a(n) = (n + 1)*(n^2 + n + 1)*(n^3 + n^2 + n + 1)*(n^4 + n^3 + n^2 + n + 1).
G.f.: (1 + x*(109 + x*(8500 + x*(150700 + x*(792550 + x*(1454134 + x*(978436 + 5*x*(45788 + x*(3053 + 33*x)))))))))/(1 - x)^11.
Showing 1-10 of 18 results. Next