A070071 a(n) = n*B(n), where B(n) are the Bell numbers, A000110.
0, 1, 4, 15, 60, 260, 1218, 6139, 33120, 190323, 1159750, 7464270, 50563164, 359377681, 2672590508, 20744378175, 167682274352, 1408702786668, 12277382510862, 110822101896083, 1034483164707440, 9972266139291771, 99147746245841106, 1015496134666939958
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..574 (terms n=0..200 from Vincenzo Librandi)
- Augustine O. Munagi, Extended set partitions with successions, European J. Combin. 29(5) (2008), 1298--1308.
Crossrefs
Programs
-
Magma
[n*Bell(n): n in [0..25]]; // Vincenzo Librandi, Mar 15 2014
-
Maple
with(combinat): a:=n->sum(numbcomb (n,0)*bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007 with(combinat): a:=n->sum(bell(n), j=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Apr 25 2007 a:=n->sum(sum(Stirling2(n, k), j=1..n), k=1..n): seq(a(n), n=0..21); # Zerinvary Lajos, Jun 28 2007
-
Mathematica
a[n_] := n!*Coefficient[Series[x E^(E^x+x-1), {x, 0, n}], x, n] Table[Sum[BellB[n, 1], {i, 1, n}], {n, 0, 21}] (* Zerinvary Lajos, Jul 16 2009 *) Table[n*BellB[n], {n, 0, 20}] (* Vaclav Kotesovec, Mar 13 2014 *)
-
PARI
a(n)=local(t); if(n<0,0,t=exp(x+O(x^n)); n!*polcoeff(x*t*exp(t-1),n))
-
Sage
[bell_number(n)*n for n in range(22) ] # Zerinvary Lajos, Mar 14 2009
Formula
E.g.f: x*exp(x)*exp(exp(x)-1).
Sum_{k=1..n} n*binomial(n-1, k-1)*Bell(n-k), n >= 2. - Zerinvary Lajos, Nov 22 2006
a(n) ~ n^(n+1) * exp(n/LambertW(n)-1-n) / (sqrt(1+LambertW(n)) * LambertW(n)^n). - Vaclav Kotesovec, Mar 13 2014
a(n) = Sum_{k=1..n} k * A175757(n,k). - Alois P. Heinz, Mar 03 2020
a(n) = Sum_{j=0..n} n * Stirling2(n,j). - Detlef Meya, Apr 11 2024
Comments