A070165 Irregular triangle read by rows giving trajectory of n in Collatz problem.
1, 2, 1, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 5, 16, 8, 4, 2, 1, 6, 3, 10, 5, 16, 8, 4, 2, 1, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 8, 4, 2, 1, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 10, 5, 16, 8, 4, 2, 1, 11, 34, 17, 52, 26, 13
Offset: 1
Examples
The irregular array a(n,k) starts: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1: 1 2: 2 1 3: 3 10 5 16 8 4 2 1 4: 4 2 1 5: 5 16 8 4 2 1 6: 6 3 10 5 16 8 4 2 1 7: 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 8: 8 4 2 1 9: 9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 10: 10 5 16 8 4 2 1 11: 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 12: 12 6 3 10 5 16 8 4 2 1 13: 13 40 20 10 5 16 8 4 2 1 14: 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 15: 15 46 23 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1 ... Reformatted and extended by _Wolfdieter Lang_, Mar 20 2014
Links
- T. D. Noe, Rows n = 1..100 of triangle, flattened
- Gordon Charlton ("Beat Frequency"), Hailstone Trajectory (mp3 file)
- David Eisenbud and Brady Haran, UNCRACKABLE? The Collatz Conjecture, Numberphile Video, 2016.
- David Rabahy, Hailstone Sequence presented as a spreadsheet
- Anatoly E. Voevudko, File of first 10K Collatz sequences
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
Crossrefs
Programs
-
Haskell
a070165 n k = a070165_tabf !! (n-1) !! (k-1) a070165_tabf = map a070165_row [1..] a070165_row n = (takeWhile (/= 1) $ iterate a006370 n) ++ [1] a070165_list = concat a070165_tabf -- Reinhard Zumkeller, Oct 07 2011
-
Maple
T:= proc(n) option remember; `if`(n=1, 1, [n, T(`if`(n::even, n/2, 3*n+1))][]) end: seq(T(n), n=1..15); # Alois P. Heinz, Jan 29 2021
-
Mathematica
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; Flatten[Table[Collatz[n], {n, 10}]] (* T. D. Noe, Dec 03 2012 *)
-
PARI
row(n, lim=0)={if (n==1, return([1])); my(c=n, e=0, L=List(n)); if(lim==0, e=1; lim=n*10^6); for(i=1, lim, if(c%2==0, c=c/2, c=3*c+1); listput(L, c); if(e&&c==1, break)); return(Vec(L)); } \\ Anatoly E. Voevudko, Mar 26 2016; edited by Michel Marcus, Aug 10 2021
-
Python
def a(n): if n==1: return [1] l=[n, ] while True: if n%2==0: n/=2 else: n = 3*n + 1 if n not in l: l+=[n, ] if n<2: break else: break return l for n in range(1, 101): print(a(n)) # Indranil Ghosh, Apr 14 2017
Formula
T(n,k) = T^{(k)}(n) with the k-th iterate of the Collatz map T with T(n) = 3*n+1 if n is odd and T(n) = n/2 if n is even, n >= 1. T^{(0)}(n) = n. k = 0, 1, ..., A008908(n) - 1. - Wolfdieter Lang, Mar 20 2014
Extensions
Name specified and row length A-number corrected by Wolfdieter Lang, Mar 20 2014
Comments