cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070198 Smallest nonnegative number m such that m == i (mod i+1) for all 1 <= i <= n.

Original entry on oeis.org

0, 1, 5, 11, 59, 59, 419, 839, 2519, 2519, 27719, 27719, 360359, 360359, 360359, 720719, 12252239, 12252239, 232792559, 232792559, 232792559, 232792559, 5354228879, 5354228879, 26771144399, 26771144399, 80313433199, 80313433199
Offset: 0

Views

Author

Benoit Cloitre, May 06 2002

Keywords

Comments

Also, smallest k such that, for 0 <= i < n, i+1 divides k-i.
Suggested by Chinese Remainder Theorem. This sequence can generate others: smallest b(n) such that b(n) == i (mod (i+2)), 1 <= i <= n, gives b(1)=1 and b(n) = a(n+1)-1 for n > 1; smallest c(n) such that c(n) == i (mod (i+3)), 1 <= i <= n, gives c(1)=1, c(2)=17 and c(n) = a(n+2) - 2 for n > 2; smallest d(n) such that c(n) == i (mod (i+4)), 1 <= i <= n, gives d(1)=1, d(2)=26, d(3)=206 and d(n) = a(n+3) - 3 for n > 3, etc.
A208768(n) occurs A057820(n) times. - Reinhard Zumkeller, Mar 01 2012
From Kival Ngaokrajang, Oct 10 2013: (Start)
A070198(n-1) is m such that max(Sum_{i=1..n} m (mod i)) = A000217(n-1).
Example for n = 3:
m\i = 1 2 3 sum
1 0 1 1 2
2 0 0 2 2
3 0 1 0 1
4 0 0 1 1
5 0 1 2 3 <--max remainder sum = 3 = A000217(2)
6 0 0 0 0 first occurs at m = 5 = A070198(2)
(End)

Examples

			a(3) = 11 because 11 == 1 (mod 2), 11 == 2 (mod 3) and 11 == 3 (mod 4).
		

Crossrefs

Cf. A057825 (indices of primes). - R. J. Mathar, Jan 14 2009
Cf. A116151. - Zak Seidov, Mar 11 2014

Programs

  • Haskell
    a070198 n = a070198_list !! n
    a070198_list = map (subtract 1) $ scanl lcm 1 [2..]
    -- Reinhard Zumkeller, Mar 01 2012
    
  • Magma
    [Exponent(SymmetricGroup(n))-1 : n in [1..30]]; /* Vincenzo Librandi, Oct 31 2014 - after Arkadiusz Wesolowski in A003418 */
    
  • Maple
    seq(ilcm($1..n) - 1, n=1..100); # Robert Israel, Nov 03 2014
  • Mathematica
    f[n_] := ChineseRemainder[ Range[0, n - 1], Range[n]]; Array[f, 28] (* or *)
    f[n_] := LCM @@ Range@ n - 1; Array[f, 28] (* Robert G. Wilson v, Oct 30 2014 *)
  • Python
    from math import lcm
    def A070198(n): return lcm(*range(1,n+2))-1 # Chai Wah Wu, May 02 2023

Formula

a(n) = lcm(1, 2, 3, ..., n+1) - 1 = A003418(n+1) - 1.

Extensions

Edited by N. J. A. Sloane, Nov 18 2007, at the suggestion of Max Alekseyev