cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A071042 Number of 0's in n-th row of triangle in A070886.

Original entry on oeis.org

0, 1, 3, 3, 7, 7, 9, 7, 15, 15, 17, 15, 21, 19, 21, 15, 31, 31, 33, 31, 37, 35, 37, 31, 45, 43, 45, 39, 49, 43, 45, 31, 63, 63, 65, 63, 69, 67, 69, 63, 77, 75, 77, 71, 81, 75, 77, 63, 93, 91, 93, 87, 97, 91, 93, 79, 105, 99, 101, 87, 105, 91, 93, 63, 127, 127, 129, 127
Offset: 0

Views

Author

Hans Havermann, May 26 2002

Keywords

Comments

Also (omitting initial 0) number of 1's in n-th row of triangle in A071038, that is, number of ON cells at generation n of CA defined by Rule 182.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

Crossrefs

Programs

  • Mathematica
    Map[Function[Apply[Plus, Flatten[#1]]],
    CellularAutomaton[182, {{1}, 0}, 100]] (* N. J. A. Sloane, Feb 17 2015 *)
  • PARI
    a(n)=2*n-2^hammingweight(n)+1; \\ Altug Alkan, Dec 05 2015

Formula

a(n) = 2n + 1 - A001316(n) = n + A048967(n).
a(2n) = a(n) + 2n, a(2n+1) = 2a(n) + 1. - Ralf Stephan, Oct 07 2003

A001316 Gould's sequence: a(n) = Sum_{k=0..n} (binomial(n,k) mod 2); number of odd entries in row n of Pascal's triangle (A007318); a(n) = 2^A000120(n).

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 4, 8, 8, 16, 8, 16, 16, 32, 8, 16, 16, 32, 16, 32, 32, 64, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 4, 8, 8, 16, 8, 16, 16, 32
Offset: 0

Views

Author

Keywords

Comments

Also called Dress's sequence.
This sequence might be better called Glaisher's sequence, since James Glaisher showed that odd binomial coefficients are counted by 2^A000120(n) in 1899. - Eric Rowland, Mar 17 2017 [However, the name "Gould's sequence" is deeply entrenched in the literature. - N. J. A. Sloane, Mar 17 2017] [Named after the American mathematician Henry Wadsworth Gould (b. 1928). - Amiram Eldar, Jun 19 2021]
All terms are powers of 2. The first occurrence of 2^k is at n = 2^k - 1; e.g., the first occurrence of 16 is at n = 15. - Robert G. Wilson v, Dec 06 2000
a(n) is the highest power of 2 dividing binomial(2n,n) = A000984(n). - Benoit Cloitre, Jan 23 2002
Also number of 1's in n-th row of triangle in A070886. - Hans Havermann, May 26 2002. Equivalently, number of live cells in generation n of a one-dimensional cellular automaton, Rule 90, starting with a single live cell. - Ben Branman, Feb 28 2009. Ditto for Rule 18. - N. J. A. Sloane, Aug 09 2014. This is also the odd-rule cellular automaton defined by OddRule 003 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
Also number of numbers k, 0<=k<=n, such that (k OR n) = n (bitwise logical OR): a(n) = #{k : T(n,k)=n, 0<=k<=n}, where T is defined as in A080098. - Reinhard Zumkeller, Jan 28 2003
To construct the sequence, start with 1 and use the rule: If k >= 0 and a(0),a(1),...,a(2^k-1) are the first 2^k terms, then the next 2^k terms are 2*a(0),2*a(1),...,2*a(2^k-1). - Benoit Cloitre, Jan 30 2003
Also, numerator((2^k)/k!). - Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Mar 03 2004
The odd entries in Pascal's triangle form the Sierpiński Gasket (a fractal). - Amarnath Murthy, Nov 20 2004
Row sums of Sierpiński's Gasket A047999. - Johannes W. Meijer, Jun 05 2011
Fixed point of the morphism "1" -> "1,2", "2" -> "2,4", "4" -> "4,8", ..., "2^k" -> "2^k,2^(k+1)", ... starting with a(0) = 1; 1 -> 12 -> 1224 -> = 12242448 -> 122424482448488(16) -> ... . - Philippe Deléham, Jun 18 2005
a(n) = number of 1's of stage n of the one-dimensional cellular automaton with Rule 90. - Andras Erszegi (erszegi.andras(AT)chello.hu), Apr 01 2006
a(33)..a(63) = A117973(1)..A117973(31). - Stephen Crowley, Mar 21 2007
Or the number of solutions of the equation: A000120(x) + A000120(n-x) = A000120(n). - Vladimir Shevelev, Jul 19 2009
For positive n, a(n) equals the denominator of the permanent of the n X n matrix consisting entirely of (1/2)'s. - John M. Campbell, May 26 2011
Companions to A001316 are A048896, A105321, A117973, A151930 and A191488. They all have the same structure. We observe that for all these sequences a((2*n+1)*2^p-1) = C(p)*A001316(n), p >= 0. If C(p) = 2^p then a(n) = A001316(n), if C(p) = 1 then a(n) = A048896(n), if C(p) = 2^p+2 then a(n) = A105321(n+1), if C(p) = 2^(p+1) then a(n) = A117973(n), if C(p) = 2^p-2 then a(n) = (-1)*A151930(n) and if C(p) = 2^(p+1)+2 then a(n) = A191488(n). Furthermore for all a(2^p - 1) = C(p). - Johannes W. Meijer, Jun 05 2011
a(n) = number of zeros in n-th row of A219463 = number of ones in n-th row of A047999. - Reinhard Zumkeller, Nov 30 2012
This is the Run Length Transform of S(n) = {1,2,4,8,16,...} (cf. A000079). The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product). - N. J. A. Sloane, Sep 05 2014
A105321(n+1) = a(n+1) + a(n). - Reinhard Zumkeller, Nov 14 2014
a(n) = A261363(n,n) = number of distinct terms in row n of A261363 = number of odd terms in row n+1 of A261363. - Reinhard Zumkeller, Aug 16 2015
From Gary W. Adamson, Aug 26 2016: (Start)
A production matrix for the sequence is lim_{k->infinity} M^k, the left-shifted vector of M:
1, 0, 0, 0, 0, ...
2, 0, 0, 0, 0, ...
0, 1, 0, 0, 0, ...
0, 2, 0, 0, 0, ...
0, 0, 1, 0, 0, ...
0, 0, 2, 0, 0, ...
0, 0, 0, 1, 0, ...
...
The result is equivalent to the g.f. of Apr 06 2003: Product_{k>=0} (1 + 2*z^(2^k)). (End)
Number of binary palindromes of length n for which the first floor(n/2) symbols are themselves a palindrome (Ji and Wilf 2008). - Jeffrey Shallit, Jun 15 2017

Examples

			Has a natural structure as a triangle:
  1,
  2,
  2,4,
  2,4,4,8,
  2,4,4,8,4,8,8,16,
  2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,
  2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,32,64,
  ...
The rows converge to A117973.
From _Omar E. Pol_, Jun 07 2009: (Start)
Also, triangle begins:
   1;
   2,2;
   4,2,4,4;
   8,2,4,4,8,4,8,8;
  16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16;
  32,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,32;
  64,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32,4,8,8,16,8,16,16,32,8,16,16,32,16,32,...
(End)
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 2*x^4 + 4*x^5 + 4*x^6 + 8*x^7 + 2*x^8 + ... - _Michael Somos_, Aug 26 2015
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, p. 75ff.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 145-151.
  • James W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quarterly Journal of Pure and Applied Mathematics, Vol. 30 (1899), pp. 150-156.
  • H. W. Gould, Exponential Binomial Coefficient Series. Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sep 1961.
  • Olivier Martin, Andrew M. Odlyzko, and Stephen Wolfram, Algebraic properties of cellular automata, Comm. Math. Physics, Vol. 93 (1984), pp. 219-258. Reprinted in Theory and Applications of Cellular Automata, S Wolfram, Ed., World Scientific, 1986, pp. 51-90 and in Cellular Automata and Complexity: Collected Papers of Stephen Wolfram, Addison-Wesley, 1994, pp. 71-113
  • Manfred R. Schroeder, Fractals, Chaos, Power Laws, W. H. Freeman, NY, 1991, page 383.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Andrew Wuensche, Exploring Discrete Dynamics, Luniver Press, 2011. See Fig. 2.3.

Crossrefs

Equals left border of triangle A166548. - Gary W. Adamson, Oct 16 2009
For generating functions Product_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
For partial sums see A006046. For first differences see A151930.
This is the numerator of 2^n/n!, while A049606 gives the denominator.
If we subtract 1 from the terms we get a pair of essentially identical sequences, A038573 and A159913.
A163000 and A163577 count binomial coefficients with 2-adic valuation 1 and 2. A275012 gives a measure of complexity of these sequences. - Eric Rowland, Mar 15 2017
Cf. A286575 (run-length transform), A368655 (binomial transform), also A037445.

Programs

  • Haskell
    import Data.List (transpose)
    a001316 = sum . a047999_row  -- Reinhard Zumkeller, Nov 24 2012
    a001316_list = 1 : zs where
       zs = 2 : (concat $ transpose [zs, map (* 2) zs])
    -- Reinhard Zumkeller, Aug 27 2014, Sep 16 2011
    (Sage, Python)
    from functools import cache
    @cache
    def A001316(n):
        if n <= 1: return n+1
        return A001316(n//2) << n%2
    print([A001316(n) for n in range(88)])  # Peter Luschny, Nov 19 2012
    
  • Maple
    A001316 := proc(n) local k; add(binomial(n,k) mod 2, k=0..n); end;
    S:=[1]; S:=[op(S),op(2*s)]; # repeat ad infinitum!
    a := n -> 2^add(i,i=convert(n,base,2)); # Peter Luschny, Mar 11 2009
  • Mathematica
    Table[ Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ], {n, 0, 100} ]
    Nest[ Join[#, 2#] &, {1}, 7] (* Robert G. Wilson v, Jan 24 2006 and modified Jul 27 2014 *)
    Map[Function[Apply[Plus,Flatten[ #1]]], CellularAutomaton[90,{{1},0},100]] (* Produces counts of ON cells. N. J. A. Sloane, Aug 10 2009 *)
    ArrayPlot[CellularAutomaton[90, {{1}, 0}, 20]] (* Illustration of first 20 generations. - N. J. A. Sloane, Aug 14 2014 *)
    Table[2^(RealDigits[n - 1, 2][[1]] // Total), {n, 1, 100}] (* Gabriel C. Benamy, Dec 08 2009 *)
    CoefficientList[Series[Exp[2*x], {x, 0, 100}], x] // Numerator (* Jean-François Alcover, Oct 25 2013 *)
    Count[#,?OddQ]&/@Table[Binomial[n,k],{n,0,90},{k,0,n}] (* _Harvey P. Dale, Sep 22 2015 *)
    2^DigitSum[Range[0, 100], 2] (* Paolo Xausa, Jul 31 2025 *)
  • PARI
    {a(n) = if( n<0, 0, numerator(2^n / n!))};
    
  • PARI
    A001316(n)=1<M. F. Hasler, May 03 2009
    
  • PARI
    a(n)=2^hammingweight(n) \\ Charles R Greathouse IV, Jan 04 2013
    
  • Python
    def A001316(n):
        return 2**bin(n)[2:].count("1") # Indranil Ghosh, Feb 06 2017
    
  • Python
    def A001316(n): return 1<Karl-Heinz Hofmann, Aug 01 2025
    
  • Python
    import numpy # (version >= 2.0.0)
    n_up_to = 2**22
    A000079 = 1 << numpy.arange(n_up_to.bit_length())
    A001316 = A000079[numpy.bitwise_count(numpy.arange(n_up_to))]
    print(A001316[0:100]) # Karl-Heinz Hofmann, Aug 01 2025
    
  • Scheme
    (define (A001316 n) (let loop ((n n) (z 1)) (cond ((zero? n) z) ((even? n) (loop (/ n 2) z)) (else (loop (/ (- n 1) 2) (* z 2)))))) ;; Antti Karttunen, May 29 2017

Formula

a(n) = 2^A000120(n).
a(0) = 1; for n > 0, write n = 2^i + j where 0 <= j < 2^i; then a(n) = 2*a(j).
a(n) = 2*a(n-1)/A006519(n) = A000079(n)*A049606(n)/A000142(n).
a(n) = A038573(n) + 1.
G.f.: Product_{k>=0} (1+2*z^(2^k)). - Ralf Stephan, Apr 06 2003
a(n) = Sum_{i=0..2*n} (binomial(2*n, i) mod 2)*(-1)^i. - Benoit Cloitre, Nov 16 2003
a(n) mod 3 = A001285(n). - Benoit Cloitre, May 09 2004
a(n) = 2^n - 2*Sum_{k=0..n} floor(binomial(n, k)/2). - Paul Barry, Dec 24 2004
a(n) = Product_{k=0..log_2(n)} 2^b(n, k), b(n, k) = coefficient of 2^k in binary expansion of n. - Paul D. Hanna
Sum_{k=0..n-1} a(k) = A006046(n).
a(n) = n/2 + 1/2 + (1/2)*Sum_{k=0..n} (-(-1)^binomial(n,k)). - Stephen Crowley, Mar 21 2007
G.f. for a(n)/A156769(n): (1/2)*z^(1/2)*sinh(2*z^(1/2)). - Johannes W. Meijer, Feb 20 2009
Equals infinite convolution product of [1,2,0,0,0,0,0,0,0] aerated (A000079 - 1) times, i.e., [1,2,0,0,0,0,0,0,0] * [1,0,2,0,0,0,0,0,0] * [1,0,0,0,2,0,0,0,0]. - Mats Granvik, Gary W. Adamson, Oct 02 2009
a(n) = f(n, 1) with f(x, y) = if x = 0 then y otherwise f(floor(x/2), y*(1 + x mod 2)). - Reinhard Zumkeller, Nov 21 2009
a(n) = 2^(number of 1's in binary form of (n-1)). - Gabriel C. Benamy, Dec 08 2009
a((2*n+1)*2^p-1) = (2^p)*a(n), p >= 0. - Johannes W. Meijer, Jun 05 2011
a(n) = A000120(A001317(n)). - Reinhard Zumkeller, Nov 24 2012
a(n) = A226078(n,1). - Reinhard Zumkeller, May 25 2013
a(n) = lcm(n!, 2^n) / n!. - Daniel Suteu, Apr 28 2017
a(n) = A061142(A005940(1+n)). - Antti Karttunen, May 29 2017
a(0) = 1, a(2*n) = a(n), a(2*n+1) = 2*a(n). - Daniele Parisse, Feb 15 2024
a(n*m) <= a(n)^A000120(m). - Joe Amos, Mar 27 2025

Extensions

Additional comments from Henry Bottomley, Mar 12 2001
Further comments from N. J. A. Sloane, May 30 2009

A080263 A014486-encoding of the branch-reduced binomial-mod-2 binary trees.

Original entry on oeis.org

2, 50, 906, 247986, 4072138, 1059204274, 272900475786, 17953590946285746, 287705670922216138, 73724537815637830834, 18880972926031430339466, 1237678872789190922262530226, 316876593058175709191975346890
Offset: 0

Views

Author

Antti Karttunen, Mar 02 2003

Keywords

Comments

These trees are obtained from the successive generations of Rule 90 cellular automaton (A070886) or Pascal's triangle computed modulo 2 (A047999), with alive cells of the automaton (respectively: the odd binomials) forming the vertices of the zigzag tree.

References

  • J. C. P. Miller, Periodic Forests of Stunted Trees, Phil. Tran. Roy. Soc. London A266 (1970) 63; A293 (1980) 48.

Crossrefs

Same sequence in binary: A080264. Cf. A080265. Breadth-first-wise encodings of the same trees: A080268. Corresponding branch-reduced zigzag trees: A080293.
Number of edges in general trees/internal nodes in binary trees: A006046, number of zigzag-edges (those colored black in illustrations) is one less: A074330. Cf. A080978.

A070887 Triangle read by rows giving successive states of one-dimensional cellular automaton generated by "Rule 110".

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, May 19 2002

Keywords

Comments

New state of cell is 1 in every case except when the previous states of the cell and its two neighbors were all the same, or when the left neighbor was 1 and the cell and its right neighbor were both 0.
A cellular automaton using Rule 110 with arbitrary inputs is a universal Turing machine.
Row n has length n.
T(n,k) = A075437(n-1,k-1), k=1..n. - Reinhard Zumkeller, Jun 26 2013

Examples

			1;
1,1;
1,1,1;
1,1,0,1;
1,1,1,1,1; ...
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 31ff..

Crossrefs

Cf. A047999.
A071049 gives number of ON cells at n-th generation.

Programs

  • Haskell
    a070887 n k = a070887_tabl !! (n-1) !! (k-1)
    a070887_row n = a070887_tabl !! (n-1)
    a070887_tabl = zipWith take [1..] a075437_tabf
    -- Reinhard Zumkeller, Jun 26 2013
  • Maple
    A070887 := proc(n,k)
        option remember;
        local lef,mid,rig ;
        if k < 1 or k > n then
            0;
        elif n = 1 then
            1;
        else
            lef := procname(n-1,k-2) ;
            mid := procname(n-1,k-1) ;
            rig := procname(n-1,k) ;
            if lef = mid and mid = rig then
                0 ;
            elif lef = 1 and mid =0 and rig =0 then
                0;
            else
                1 ;
            end if;
        end if;
    end proc:
    for n from 1 to 12 do
        for k from 1 to n do
            printf("%d ",A070887(n,k)) ;
        end do:
        printf("\n")
    end do: # R. J. Mathar, Feb 18 2015
  • Mathematica
    rows = 14; ca = CellularAutomaton[110, {{1}, 0}, rows-1]; Flatten[ Table[ca[[k, rows-k+1 ;; -1]], {k, 1, rows}]] (* Jean-François Alcover, May 24 2012 *)

Extensions

More terms from Hans Havermann, May 26 2002

A292686 Sierpinski-type iteration: start with a(0)=1, at each step, replace 0 with 000 and 1 with 101.

Original entry on oeis.org

1, 101, 101000101, 101000101000000000101000101, 101000101000000000101000101000000000000000000000000000101000101000000000101000101
Offset: 0

Views

Author

M. F. Hasler, Oct 20 2017

Keywords

Comments

See A292687 for the decimal representation of a(n) viewed as a "binary number", i.e., as written in base 2.
The Sierpinski carpet (A153490) can be seen as 2-dimensional version of this 1-dimensional variant. The classical Sierpinski gasket triangle (Pascal's triangle mod 2) and "Rule 18" (or Rule 90, A070886) and "Rule 22" (A071029) have similar graphs.
The n-th term a(n) has 3^n digits, the middle third of which are all zero. The digits of a(n) are again the first and last 3^n digits of a(n+1), separated by 3^n zeros.

Examples

			a(0) = 1 -> 101 = a(1);
a(1) = 101 -> concat(101,000,101) = 101000101 = a(2).
		

Crossrefs

Cf. A292687 for the decimal representation of a(n) viewed as a "binary number", i.e., as written in base 2.
Cf. A153490 (Sierpinski carpet), A047999 (Sierpinski gasket = Pascal's triangle mod 2), A070886 (Rule 18 / Rule 90), A071029 (Rule 22).
Cf. A088917.

Programs

  • Mathematica
    A292686[nmax_]:=FoldList[Times,1,100^(3^Range[0,nmax-1])+1];A292686[5] (* Paolo Xausa, May 13 2023 *)
  • PARI
    a(n,a=1)=for(k=1,n,a=fromdigits(binary(a)*5,8));fromdigits(binary(a),10) \\ Illustration of the first formula.
    
  • PARI
    A292686(n)=prod(k=0,n-1,100^(3^k)+1)

Formula

a(n+1) = convert(5*a(n), from base 8, to base 2).
a(n+1) = (100^(3^n)+1)*a(n).
a(n) = Product_{k=0 .. n-1} (100^(3^k)+1).

A185587 Irregular triangle read by rows: row n gives a list of the lengths of the free spaces at the n-th stage in a Rule 18 cellular automaton.

Original entry on oeis.org

1, 3, 1, 1, 1, 7, 1, 5, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 15, 1, 13, 1, 3, 11, 3, 1, 1, 1, 9, 1, 1, 1, 7, 7, 7, 1, 5, 1, 5, 1, 5, 1, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 31, 1, 29, 1, 3, 27, 3, 1, 1, 1, 25, 1, 1, 1, 7, 23, 7, 1, 5, 1, 21, 1, 5, 1, 3, 3, 3, 19, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 15, 15, 15, 1, 13, 1, 13, 1, 13, 1, 3, 11, 3, 11, 3, 11, 3
Offset: 1

Views

Author

Benjamin Heiland, Feb 04 2011

Keywords

Comments

a(n) is the size of the n^th free space inside the development of a Rule 18 CA (related to logical XOR) on a tape started with a single 1.

Examples

			Cellular automaton defined by Rule 18 (with sizes in blank space):
(x is a 1 in the automaton, the numbers are the sizes of white spaces)
                x          ->
               x1x         ->1
              x 3 x        ->3
             x1x1x1x       ->1,1,1
            x   7   x      ->7
           x1x  5  x1x     ->1,5,1
          x 3 x 3 x 3 x    ->3,3,3
         x1x1x1x1x1x1x1x   ->1,1,1,1,1,1,1
and so on.
		

Crossrefs

Cf. A070886 (Rule 90 = Rule 18, starting with 1).

Programs

  • C
    #include
    #include
    int main(){
    int inumgen;                   //number of generations
    int *iacurrentgen;             //current generation
    int *ialastgen;                //last genereation (to calculate currentgen)
    int i=0;                       //loop counter
    int j=0;                       //another loop counter
    int nullcount=0;               //used to determinate whitespace size
    int a;                         //a for XOR to get new value
    int b;                         //b for XOR to get new value
    iacurrentgen=(int*)calloc(1,sizeof(int));
    ialastgen=(int*)calloc(1,sizeof(int));
    ialastgen[0]=1;
    printf("Calculating A185587\n");
    printf("please enter number of generations\n");
    printf("note that the number of sequence elements per Generation is fluctuating.\n");
    scanf("%d",&inumgen);
    i++;                           //we start at generation1 , not at offset.
    while(i<=inumgen){
      iacurrentgen=(int*)realloc(iacurrentgen,((i*2+1)*sizeof(int)));
      while(j<(i*2+1)){
       if((j-2)<0)
        a=0;
       else
        a=ialastgen[j-2];
       if(j>((i-1)*2))
        b=0;
       else
        b=ialastgen[j];
       iacurrentgen[j]=(a||b)&&!(a&&b);      //(a||b)&&!(a&&b)=aXORb
       j++;
      }
      j=0;
      ialastgen=(int*)realloc(ialastgen,((i*2+1)*sizeof(int)));
      while(j<=i*2){
       ialastgen[j]=iacurrentgen[j];
       if(iacurrentgen[j]==1){
        if(nullcount!=0){
         printf("%d,",nullcount);
         nullcount=0;
        }
       }
       if(iacurrentgen[j]==0){
        nullcount++;}
       j++;
      }
      j=0;
      printf("\n");
      i++;
    }
    }

A265172 Binary representation of the n-th iteration of the "Rule 90" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 101, 10001, 1010101, 100000001, 10100000101, 1000100010001, 101010101010101, 10000000000000001, 1010000000000000101, 100010000000000010001, 10101010000000001010101, 1000000010000000100000001, 101000001010000010100000101, 10001000100010001000100010001
Offset: 0

Views

Author

Robert Price, Dec 05 2015

Keywords

Comments

Rules 26, 82, 90, 146, 154, 210 and 218 also generate this sequence.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A070886.

Programs

  • Mathematica
    rule = 90; rows = 20; Table[FromDigits[Table[Take[CellularAutomaton[rule,{{1},0}, rows-1, {All,All}][[k]], {rows-k+1, rows+k-1}], {k,1,rows}][[k]]], {k,1,rows}]
Showing 1-7 of 7 results.