cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071253 a(n) = n^2*(n^2+1).

Original entry on oeis.org

0, 2, 20, 90, 272, 650, 1332, 2450, 4160, 6642, 10100, 14762, 20880, 28730, 38612, 50850, 65792, 83810, 105300, 130682, 160400, 194922, 234740, 280370, 332352, 391250, 457652, 532170, 615440, 708122, 810900, 924482, 1049600, 1187010, 1337492, 1501850, 1680912
Offset: 0

Views

Author

N. J. A. Sloane, Jun 12 2002

Keywords

Comments

The identity (n^5 + n^3)^2 + (n^2*(n^2 + 1))^2 = n*(n^3 + n)^3 can be written as A155977(n)^2 + a(n)^2 = n*A034262(n)^3. - Vincenzo Librandi, Aug 08 2010

Crossrefs

Programs

Formula

a(n) = A002522(n)*A000290(n). - Zerinvary Lajos, Apr 20 2008
a(n) = (1/4)*sinh(2*arcsinh(n))^2. - Artur Jasinski, Feb 10 2010
G.f.: 2*x*(1+x)*(1+4*x+x^2)/(1-x)^5. - Colin Barker, Jan 08 2012
a(n) = A002378(A000290(n)). - Rick L. Shepherd, Sep 22 2014
Sum_{n>=1} 1/a(n) = 0.5682... = Pi^2/6- (Pi*coth Pi-1)/2 = A013661 - A259171 [J. Math. Anal. Appl. 316 (2006) 328]. - R. J. Mathar, Oct 18 2019
a(n) = 2*A037270(n). - R. J. Mathar, Oct 18 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/12 - 1/2 + Pi*cosech(Pi)/2. - Amiram Eldar, Nov 05 2020
E.g.f.: exp(x)*x*(2 + 8*x + 6*x^2 + x^3). - Stefano Spezia, Oct 08 2022
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Apr 16 2023