cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A072351 Smallest n-digit Fibonacci number.

Original entry on oeis.org

1, 13, 144, 1597, 10946, 121393, 1346269, 14930352, 102334155, 1134903170, 12586269025, 139583862445, 1548008755920, 10610209857723, 117669030460994, 1304969544928657, 14472334024676221, 160500643816367088, 1100087778366101931, 12200160415121876738
Offset: 1

Views

Author

Shyam Sunder Gupta, Jul 17 2002

Keywords

Examples

			a(3)=144, as 144 is smallest 3-digit Fibonacci number.
		

Crossrefs

Programs

  • Maple
    F:= proc(n) option remember; local f;
          f:= `if`(n=1, [1$2], F(n-1));
          do f:= [f[2], f[1]+f[2]];
             if length(f[1]) `if`(n=1, 1, F(n-1)[2]):
    seq(a(n), n=1..25);  # Alois P. Heinz, Mar 10 2016
  • Mathematica
    a[n_] := Fibonacci[Ceiling[k /. FindRoot[Log[10, Fibonacci[k]] == n-1, {k, 1}]]]; Array[a, 20] (* Jean-François Alcover, Jan 18 2017 *)
    With[{fbs=Fibonacci[Range[100]]},Table[SelectFirst[fbs,IntegerLength[#]==n&],{n,20}]] (* Harvey P. Dale, Dec 13 2024 *)
  • PARI
    A072351(n,phi=(sqrt(5)+1)/2)=round(phi^ceil((n*log(10)+log(5)/2)/log(phi))/sqrt(5)) \\  Franklin T. Adams-Watters, May 27 2011
    
  • Python
    def A072351_list(n):
        list = [1]
        x, y = 1, 1
        while len(list) < n:
            if len(str(x)) < len(str(y)):
                list.append(y)
            x, y = y, x + y
        return list
    print(A072351_list(20)) # M. Eren Kesim, Jun 28 2021

Formula

A072351(n) = floor(1/2 + phi^ceiling((n*log(10) + (1/2)*log(5))/log(phi))/sqrt(5)). - Franklin T. Adams-Watters, May 27 2011

A072353 a(n) is the index of the largest Fibonacci number containing n digits.

Original entry on oeis.org

6, 11, 16, 20, 25, 30, 35, 39, 44, 49, 54, 59, 63, 68, 73, 78, 83, 87, 92, 97, 102, 106, 111, 116, 121, 126, 130, 135, 140, 145, 150, 154, 159, 164, 169, 173, 178, 183, 188, 193, 197, 202, 207, 212, 216, 221, 226, 231, 236, 240, 245, 250, 255, 260, 264, 269, 274
Offset: 1

Views

Author

Shyam Sunder Gupta, Jul 17 2002

Keywords

Comments

Partial sums of A050815: a(n) = Sum_{k=1..n} A050815(k). - Reinhard Zumkeller, Apr 14 2005
Equivalently, a(n) is the number of Fibonacci numbers < 10^n including F(0) = 0 and F(1) = F(2) = 1 once. - Derek Orr, Jun 01 2014

Examples

			a(3)=16, as the 16th Fibonacci number is the largest Fibonacci number with 3 digits.
		

Crossrefs

Programs

  • Mathematica
    With[{fibs=Fibonacci[Range[300]]},Flatten[Position[fibs,#]&/@ Table[ Max[ Select[fibs,IntegerLength[#]==n&]],{n,60}]]] (* Harvey P. Dale, Nov 09 2011 *)
  • Python
    def A072353_list(n):
        list = []
        x, y, index = 1, 1, 1
        while len(list) < n:
            if len(str(x)) < len(str(y)):
                list.append(index)
            x, y = y, x + y
            index += 1
        return list
    print(A072353_list(57)) # M. Eren Kesim, Jul 19 2021

Formula

Limit_{n->oo} a(n)/n = 1/log_10((1+sqrt(5))/2) = 1/A097348 = 4.784... . - Reinhard Zumkeller, Apr 14 2005.
a(n) = floor(n*log(10)/log(phi)+log(5)/(2*log(phi))), where phi=(1+sqrt(5))/2, the golden ratio. - Hans J. H. Tuenter, Jul 08 2025

Extensions

More terms from Reinhard Zumkeller, Apr 14 2005
Name edited by Michel Marcus, Jul 19 2021
Showing 1-2 of 2 results.