cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A072354 a(n)-th Fibonacci number is the smallest Fibonacci number containing n digits.

Original entry on oeis.org

1, 7, 12, 17, 21, 26, 31, 36, 40, 45, 50, 55, 60, 64, 69, 74, 79, 84, 88, 93, 98, 103, 107, 112, 117, 122, 127, 131, 136, 141, 146, 151, 155, 160, 165, 170, 174, 179, 184, 189, 194, 198, 203, 208, 213, 217, 222, 227, 232, 237
Offset: 1

Views

Author

Shyam Sunder Gupta, Jul 18 2002

Keywords

Examples

			a(3) = 12 as the 12th Fibonacci number is the smallest Fibonacci number with 3 digits.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Position[IntegerLength[Fibonacci[Range[250]]],n,{1},1],{n,50}]] (* Harvey P. Dale, Dec 22 2015 *)
  • PARI
    a(n)={my(k=1); while(logint(fibonacci(k),10)Harry J. Smith, Nov 29 2008

Formula

For n>1, a(n) = A072353(n-1) + 1. - Michel Marcus, Jun 01 2014
For n>1, a(n) = ceiling(n*log(10)/log(phi)-log(20)/(2*log(phi))), where phi=(1+sqrt(5))/2, the golden ratio. - Hans J. H. Tuenter, Jul 13 2025

A050815 Number of positive Fibonacci numbers with n decimal digits.

Original entry on oeis.org

6, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Comments

If n>1 then a(n) = 4 or 5. - Robert Gerbicz, Sep 05 2002
The sequence is almost periodic, see also A072353. - Reinhard Zumkeller, Apr 14 2005

Examples

			At length 1 there are 6 such numbers: 1, 1, 2, 3, 5 and 8.
		

Crossrefs

See A098842 for another version.

Programs

  • Mathematica
    Drop[Last/@Tally[Table[IntegerLength[Fibonacci[n]],{n,505}]],-1] (* Jayanta Basu, Jun 01 2013 *)

Formula

Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = log(10)/log(phi) = 1/A097348 = 4.7849719667... - Amiram Eldar, Jan 12 2022
For n>1, a(n) = 4+[{n*alpha+beta}<{alpha}], where alpha=log(10)/log(phi), beta=log(5)/(2*log(phi)), [X] is the Iverson bracket, {x}=x-floor(x), denotes the fractional part of x, and phi=(1+sqrt(5))/2. - Hans J. H. Tuenter, Jul 20 2025
a(n) = A072354(n+1)-A072354(n), a first-order difference. - Hans J. H. Tuenter, Jul 20 2025

A072352 a(n) is the largest n-digit Fibonacci number.

Original entry on oeis.org

8, 89, 987, 6765, 75025, 832040, 9227465, 63245986, 701408733, 7778742049, 86267571272, 956722026041, 6557470319842, 72723460248141, 806515533049393, 8944394323791464, 99194853094755497, 679891637638612258, 7540113804746346429, 83621143489848422977
Offset: 1

Views

Author

Shyam Sunder Gupta, Jul 17 2002

Keywords

Examples

			a(3)=987, as 987 is largest 3-digit Fibonacci number.
		

Crossrefs

Programs

  • Maple
    fib:= combinat:-fibonacci:
    g:= proc(x) local n;
      n:= floor(ln((2*x+1)*sqrt(5)/2)/ln((1+sqrt(5))/2));
      if fib(n) > x then while fib(n) > x do n:= n-1 od
      elif fib(n+1) <= x then while fib(n+1) <= x do n:= n+1 od
      fi;
      fib(n)
    end:
    seq(g(10^n),n=1..50); # Robert Israel, Mar 10 2016
    # second Maple program:
    F:= proc(n) option remember; local f;
          f:= `if`(n=1, [1$2], F(n-1));
          do f:= [f[2], f[1]+f[2]];
             if length(f[1]) F(n)[1]:
    seq(a(n), n=1..25);  # Alois P. Heinz, Mar 10 2016
  • Mathematica
    Table[k=1;While[Fibonacci@++k<10^n];Fibonacci[k-1],{n,20}] (* Giorgos Kalogeropoulos, Jul 06 2021 *)
  • Python
    def A072352_list(n):
        list = []
        x, y = 1, 1
        while len(list) < n:
            if len(str(x)) < len(str(y)):
                list.append(x)
            x, y = y, x + y
        return list
    print(A072352_list(20)) # M. Eren Kesim, Jun 28 2021

Formula

a(n) = A000045(A072353(n)). - Robert Israel, Mar 10 2016

A105566 Number of blocks of exactly 5 Fibonacci numbers having equal length <= n.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 13, 14, 15, 16, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 31, 31, 32, 33, 34, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 48, 49, 49, 50, 51, 52, 53, 53, 54, 55, 56, 56, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 14 2005

Keywords

Comments

a(n) = Sum_{k=1..n} A105565(k); a(n) = n - A105564(n);
lim_{n->inf} a(n)/n = 1/log_10((1+sqrt(5))/2) - 4 = 0.784....

References

  • Juergen Spilker, Die Ziffern der Fibonacci-Zahlen, Elemente der Mathematik 58 (Birkhäuser 2003).

Crossrefs

A072509 Number of Fibonacci numbers F(k) <= 10^n which end in 1.

Original entry on oeis.org

2, 2, 3, 3, 4, 5, 6, 6, 6, 7, 7, 7, 8, 10, 11, 11, 11, 13, 13, 14, 14, 15, 15, 15, 15, 17, 18, 19, 19, 20, 21, 22, 22, 22, 23, 23, 23, 23, 26, 27, 27, 27, 29, 29, 30, 30, 31, 31, 31, 31, 32, 34, 35, 35, 36, 37, 38, 38, 38, 39, 39, 39, 39, 42, 42, 43, 43, 45, 45, 46, 46, 47, 47
Offset: 0

Views

Author

Vladeta Jovovic, Aug 23 2002

Keywords

Comments

Note that F(k) ends in 1 if and only if k == 1, 2, 8, 19, 22, 28, 41, or 59 (mod 60). - Robert Israel, May 14 2018

Crossrefs

Different from A073550. Cf. A072353, A072675.

Programs

A164018 The index values of the smallest and the largest n-digit Fibonacci numbers.

Original entry on oeis.org

0, 6, 7, 11, 12, 16, 17, 20, 21, 25, 26, 30, 31, 35, 36, 39, 40, 44, 45, 49, 50, 54, 55, 59, 60, 63, 64, 68, 69, 73, 74, 78, 79, 83, 84, 87, 88, 92, 93, 97, 98, 102, 103, 106, 107, 111, 112, 116, 117, 121, 122, 126, 127, 130, 131, 135, 136, 140, 141, 145
Offset: 0

Views

Author

Parthasarathy Nambi, Aug 07 2009

Keywords

Comments

= A072354 + A072353 [From Parthasarathy Nambi, Sep 14 2009]

Examples

			The index value of the smallest ten digit Fibonacci number is 45. The index value of the largest ten digit Fibonacci number is 49.
		

Crossrefs

Programs

  • Mathematica
    Drop[Flatten[{#-1,#}&/@Flatten[Table[Position[IntegerLength[Fibonacci[ Range[250]]],n,1,1],{n,50}]]],{2}](* Harvey P. Dale, Jun 04 2018 *)

Extensions

More terms from Harvey P. Dale, Jun 04 2018
Showing 1-6 of 6 results.