A002485 Numerators of convergents to Pi.
0, 1, 3, 22, 333, 355, 103993, 104348, 208341, 312689, 833719, 1146408, 4272943, 5419351, 80143857, 165707065, 245850922, 411557987, 1068966896, 2549491779, 6167950454, 14885392687, 21053343141, 1783366216531, 3587785776203, 5371151992734, 8958937768937
Offset: 0
Examples
The convergents are 0, 1, 3, 22/7, 333/106, 355/113, 103993/33102, 104348/33215, 208341/66317, 312689/99532, 833719/265381, 1146408/364913, 4272943/1360120, 5419351/1725033, 80143857/25510582, 165707065/52746197, 245850922/78256779, 411557987/131002976, 1068966896/340262731, 2549491779/811528438, ... = A002485/A002486
References
- P. Beckmann, A History of Pi. Golem Press, Boulder, CO, 2nd ed., 1971, p. 171 (but beware errors).
- CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.
- P. Finsler, Über die Faktorenzerlegung natuerlicher Zahlen, Elemente der Mathematik, 2 (1947), 1-11, see p. 7.
- K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2000; p. 293.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 274.
Links
- Daniel Mondot, Table of n, a(n) for n = 0..1947 (terms 0..201 from T. D. Noe, terms 202..1000 from G. C. Greubel).
- E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
- Marc Daumas, Des implantations differentes ..., see p. 8. [Broken link]
- Henryk Fuks, Adam Adamandy Kochanski's approximations of Pi: reconstruction of the algorithm, arXiv preprint arXiv:1111.1739 [math.HO], 2011-2014. Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.
- S. K. Lucas, Integral approximations to Pi with nonnegative integrands
- Mathematics Stack Exchange, Is there an integral that proves pi > 333/106
- G. P. Michon, Continued Fractions
- Eric Weisstein's World of Mathematics, Pi
- Eric Weisstein's World of Mathematics, Pi Continued Fraction
- Eric Weisstein's World of Mathematics, Pi Approximations
- Index entries for sequences related to the number Pi
Crossrefs
Programs
-
Maple
Digits := 60: E := Pi; convert(evalf(E),confrac,50,'cvgts'): cvgts;
-
Mathematica
Join[{0, 1}, Numerator @ Convergents[Pi,29]] (* Jean-François Alcover, Apr 08 2011 *)
-
PARI
contfracpnqn(cf=contfrac(Pi),#cf)[1,] \\ M. F. Hasler, Apr 01 2013, simplified Oct 13 2020
-
PARI
e=9e9;for(n=1,1e9,abs(tan(n))
0 monotonically. - M. F. Hasler, Apr 01 2013
Extensions
Extended and corrected by David Sloan, Sep 23 2002
Comments