cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A074384 Solutions to mod(sigma(x), 6) = 5.

Original entry on oeis.org

2401, 9604, 21609, 28561, 38416, 60025, 86436, 114244, 130321, 153664, 194481, 240100, 257049, 290521, 345744, 456976, 521284, 540225, 614656, 693889, 714025, 777924, 923521, 960400, 1028196, 1162084, 1172889, 1270129, 1382976, 1500625
Offset: 1

Views

Author

Labos Elemer, Aug 22 2002

Keywords

Examples

			4th powers of primes of the form 6k+1 are here because sigma[p^4]=p^4+p^3+p^2+p+1 congruent 1+1+1+1+1=5 mod 6. There are also other fourth powers, like 38416=(2*7)^4, 194481=(3*7)^4, 456976=(2*13)^4, and solutions which are not fourth powers like 9604=2^2*7^4 and 21609=3^2*7^4.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Mod[DivisorSigma[1, n], 6]; If[s==5, Print[n]], {n, 1, 1000000}]
    Select[Range[1600000],Mod[DivisorSigma[1,#],6]==5&] (* Harvey P. Dale, Jul 06 2014 *)

Formula

{n: A084301(n) = 5}. - R. J. Mathar, May 19 2020

A105824 a(n) = sigma(n) mod 4.

Original entry on oeis.org

1, 3, 0, 3, 2, 0, 0, 3, 1, 2, 0, 0, 2, 0, 0, 3, 2, 3, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 3, 0, 2, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 2, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 3, 0, 1, 2, 0, 0, 2, 0
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).

Programs

  • Maple
    A105824:= n-> (numtheory[sigma](n) mod 4):
    seq (A105824(n), n=1..105); # Jani Melik, Jan 26 2011
  • Mathematica
    Table[Mod[DivisorSigma[1, n], 4], {n, 100}] (* Wesley Ivan Hurt, Nov 07 2017 *)
  • PARI
    a(n)=sigma(n)%4

Formula

a(n) = A010873(A000203(n)). - Antti Karttunen, Nov 07 2017

A072462 Numbers k such that sigma(k) == 3 (mod 4).

Original entry on oeis.org

2, 4, 8, 16, 18, 25, 32, 36, 64, 72, 98, 128, 144, 162, 169, 196, 225, 242, 256, 288, 289, 324, 392, 484, 512, 576, 648, 722, 784, 841, 882, 968, 1024, 1058, 1152, 1225, 1250, 1296, 1369, 1444, 1458, 1521, 1568, 1681, 1764, 1922, 1936, 2025, 2048, 2116, 2178
Offset: 1

Views

Author

Labos Elemer, Jun 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2200], Mod[DivisorSigma[1, #], 4] == 3 &] (* Michael De Vlieger, Aug 10 2023 *)
  • PARI
    isok(n) = ((sigma(n) % 4) == 3); \\ Michel Marcus, Dec 19 2013

Extensions

Name edited by Michel Marcus, Dec 19 2013

A074625 Triangular array T(n,k) (n >= 1, 1 <= k <= n) read by rows, where T(n,k) = smallest number x such that Mod[sigma[x],n]=k.

Original entry on oeis.org

1, 1, 3, 1, 7, 2, 1, 5, 2, 3, 1, 4, 2, 3, 8, 1, 7, 2, 3, 2401, 5, 1, 29, 2, 3, 6, 5, 4, 1, 10, 2, 3, 9, 5, 4, 7, 1, 19, 2, 3, 13, 5, 4, 7, 10, 1, 6, 2, 3, 8, 5, 4, 7, 18, 19, 1, 9, 2, 3, 24, 5, 4, 7, 16, 21, 43, 1, 13, 2, 3, 2401, 5, 4, 7, 49, 31213, 9604, 6, 1, 8, 2, 3, 10, 5, 4, 7, 33, 22
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Comments

In the table output, one can observe constant diagonals (or lines in the square output). The indices of these are: 1, 3, 4, 6, 7, 8, 12, 13, ... (see A002191). And the corresponding values are: 1, 2, 3, 5, 4, 7, 6, 9, ... (see A002192). - Michel Marcus, Dec 19 2013

Examples

			Triangle begins
1;
1,3;
1,7,2;
1,5,2,3;
1,4,2,3,8; ...
		

Crossrefs

Programs

  • Mathematica
    {k=0, s=0, fl=1}; Table[Print["#"]; Table[fl=1; Print[{r, m}]; Do[s=Mod[DivisorSigma[1, n], m]; If[(s==r)&&(fl==1), Print[n]; fl=0], {n, 1, 150000}], {r, 0, m-1}], {m, 1, 25}]

Formula

Min{x; Mod[sigma[x], n]=r}, r=1..n, n=1, ...

A378998 Number of trailing 1-bits in the binary representation of sigma(n).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Cf. A000203, A007814, A088580, A028982 (positions of terms > 0), A028983 (of 0's), A072461 (of 1's), A072462 (of terms > 1), A337195, A378999 [= a(n^2)].

Programs

  • Mathematica
    IntegerExponent[DivisorSigma[1, Range[100]] + 1, 2] (* Paolo Xausa, Dec 19 2024 *)
  • PARI
    A378998(n) = valuation(sigma(n)+1,2);

Formula

a(n) = A007814(A088580(n)). [the 2-adic valuation of 1+sigma(n)]
For all n in A028982, a(n) = A337195(n).
Showing 1-5 of 5 results.