cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A074384 Solutions to mod(sigma(x), 6) = 5.

Original entry on oeis.org

2401, 9604, 21609, 28561, 38416, 60025, 86436, 114244, 130321, 153664, 194481, 240100, 257049, 290521, 345744, 456976, 521284, 540225, 614656, 693889, 714025, 777924, 923521, 960400, 1028196, 1162084, 1172889, 1270129, 1382976, 1500625
Offset: 1

Views

Author

Labos Elemer, Aug 22 2002

Keywords

Examples

			4th powers of primes of the form 6k+1 are here because sigma[p^4]=p^4+p^3+p^2+p+1 congruent 1+1+1+1+1=5 mod 6. There are also other fourth powers, like 38416=(2*7)^4, 194481=(3*7)^4, 456976=(2*13)^4, and solutions which are not fourth powers like 9604=2^2*7^4 and 21609=3^2*7^4.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Mod[DivisorSigma[1, n], 6]; If[s==5, Print[n]], {n, 1, 1000000}]
    Select[Range[1600000],Mod[DivisorSigma[1,#],6]==5&] (* Harvey P. Dale, Jul 06 2014 *)

Formula

{n: A084301(n) = 5}. - R. J. Mathar, May 19 2020

A105824 a(n) = sigma(n) mod 4.

Original entry on oeis.org

1, 3, 0, 3, 2, 0, 0, 3, 1, 2, 0, 0, 2, 0, 0, 3, 2, 3, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 3, 0, 2, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 2, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 3, 0, 1, 2, 0, 0, 2, 0
Offset: 1

Views

Author

Shyam Sunder Gupta, May 05 2005

Keywords

Crossrefs

Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).

Programs

  • Maple
    A105824:= n-> (numtheory[sigma](n) mod 4):
    seq (A105824(n), n=1..105); # Jani Melik, Jan 26 2011
  • Mathematica
    Table[Mod[DivisorSigma[1, n], 4], {n, 100}] (* Wesley Ivan Hurt, Nov 07 2017 *)
  • PARI
    a(n)=sigma(n)%4

Formula

a(n) = A010873(A000203(n)). - Antti Karttunen, Nov 07 2017

A072461 Numbers k such that sigma(k) == 1 (mod 4).

Original entry on oeis.org

1, 9, 49, 50, 81, 100, 121, 200, 338, 361, 400, 441, 450, 529, 578, 625, 676, 729, 800, 900, 961, 1089, 1156, 1352, 1600, 1682, 1800, 1849, 2209, 2312, 2401, 2450, 2704, 2738, 3042, 3200, 3249, 3362, 3364, 3481, 3600, 3969, 4050, 4225, 4489, 4624, 4761
Offset: 1

Views

Author

Labos Elemer, Jun 19 2002

Keywords

Crossrefs

Positions of 1's in A105824.

Programs

  • Mathematica
    Select[Range[5000],Mod[DivisorSigma[1,#],4]==1&] (* Harvey P. Dale, Oct 24 2016 *)
  • PARI
    isok(n) = ((sigma(n) % 4) == 1);

Extensions

Name edited by Michel Marcus, Dec 19 2013 and Amiram Eldar, Jun 26 2024

A074625 Triangular array T(n,k) (n >= 1, 1 <= k <= n) read by rows, where T(n,k) = smallest number x such that Mod[sigma[x],n]=k.

Original entry on oeis.org

1, 1, 3, 1, 7, 2, 1, 5, 2, 3, 1, 4, 2, 3, 8, 1, 7, 2, 3, 2401, 5, 1, 29, 2, 3, 6, 5, 4, 1, 10, 2, 3, 9, 5, 4, 7, 1, 19, 2, 3, 13, 5, 4, 7, 10, 1, 6, 2, 3, 8, 5, 4, 7, 18, 19, 1, 9, 2, 3, 24, 5, 4, 7, 16, 21, 43, 1, 13, 2, 3, 2401, 5, 4, 7, 49, 31213, 9604, 6, 1, 8, 2, 3, 10, 5, 4, 7, 33, 22
Offset: 1

Views

Author

Labos Elemer, Aug 26 2002

Keywords

Comments

In the table output, one can observe constant diagonals (or lines in the square output). The indices of these are: 1, 3, 4, 6, 7, 8, 12, 13, ... (see A002191). And the corresponding values are: 1, 2, 3, 5, 4, 7, 6, 9, ... (see A002192). - Michel Marcus, Dec 19 2013

Examples

			Triangle begins
1;
1,3;
1,7,2;
1,5,2,3;
1,4,2,3,8; ...
		

Crossrefs

Programs

  • Mathematica
    {k=0, s=0, fl=1}; Table[Print["#"]; Table[fl=1; Print[{r, m}]; Do[s=Mod[DivisorSigma[1, n], m]; If[(s==r)&&(fl==1), Print[n]; fl=0], {n, 1, 150000}], {r, 0, m-1}], {m, 1, 25}]

Formula

Min{x; Mod[sigma[x], n]=r}, r=1..n, n=1, ...

A324899 Odd numbers k for which sigma(k) == 3 (mod 4).

Original entry on oeis.org

25, 169, 225, 289, 841, 1225, 1369, 1521, 1681, 2025, 2601, 2809, 3025, 3721, 5329, 7569, 7921, 8281, 9025, 9409, 10201, 11025, 11881, 12321, 12769, 13225, 13689, 14161, 15129, 15625, 18225, 18769, 20449, 22201, 23409, 24025, 24649, 25281, 27225, 29929, 32761, 33489, 34969, 37249, 38809, 41209, 46225, 47961, 52441, 54289, 55225
Offset: 1

Views

Author

Antti Karttunen, Apr 20 2019

Keywords

Comments

These are all squares. Square roots are in A324909.

Crossrefs

Intersection of A016754 and A072462.
Cf. A000203, A324909 (square roots).
Cf. A325311 (a subsequence).

Programs

  • Mathematica
    Select[Range[1, 235, 2]^2, Mod[DivisorSigma[1, #], 4] == 3 &] (* Amiram Eldar, Apr 05 2024 *)
  • PARI
    isA324899(n) = ((n%2)&&3==(sigma(n)%4));

Formula

a(n) = A324909(n)^2. - Amiram Eldar, Apr 05 2024

A378998 Number of trailing 1-bits in the binary representation of sigma(n).

Original entry on oeis.org

1, 2, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 5, 0, 3, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2024

Keywords

Crossrefs

Cf. A000203, A007814, A088580, A028982 (positions of terms > 0), A028983 (of 0's), A072461 (of 1's), A072462 (of terms > 1), A337195, A378999 [= a(n^2)].

Programs

  • Mathematica
    IntegerExponent[DivisorSigma[1, Range[100]] + 1, 2] (* Paolo Xausa, Dec 19 2024 *)
  • PARI
    A378998(n) = valuation(sigma(n)+1,2);

Formula

a(n) = A007814(A088580(n)). [the 2-adic valuation of 1+sigma(n)]
For all n in A028982, a(n) = A337195(n).
Showing 1-6 of 6 results.