cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A321014 Number of divisors of n which are greater than 3.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 4, 2, 2, 1, 5, 2, 2, 2, 4, 1, 5, 1, 4, 2, 2, 3, 6, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 7, 2, 4, 2, 4, 1, 5, 3, 6, 2, 2, 1, 9, 1, 2, 4, 5, 3, 5, 1, 4, 2, 6, 1, 9, 1, 2, 4, 4, 3, 5, 1, 8, 3, 2, 1, 9, 3, 2, 2, 6, 1, 9, 3, 4, 2, 2
Offset: 1

Views

Author

N. J. A. Sloane, Nov 04 2018

Keywords

References

  • Marjorie Senechal, "Introduction to lattice geometry." In M. Waldschmidt et al., eds., From Number Theory to Physics, pp. 476-495. Springer, Berlin, Heidelberg, 1992. See Cor. 3.7.

Crossrefs

A072527 is a shifted version.
Column k=4 of A135539.

Programs

  • Maple
    d2:=proc(n) local c;
    if n <= 3 then return(0); fi;
    c:=NumberTheory[tau](n)-1;
    if (n mod 2)=0 then c:=c-1; fi;
    if (n mod 3)=0 then c:=c-1; fi; c; end;
    [seq(d2(n),n=1..120)];
  • Mathematica
    nmax = 94; Rest[CoefficientList[Series[Sum[x^k/(1 - x^k), {k, 4, nmax}], {x, 0, nmax}], x]] (* Ilya Gutkovskiy, Nov 07 2018 *)
  • PARI
    a(n) = sumdiv(n, d, d>3); \\ Michel Marcus, Nov 06 2018
    
  • PARI
    a(n) = numdiv(n) - 3 + !!(n%2) + !!(n%3) \\ David A. Corneth, Nov 07 2018
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=4} x^k/(1 - x^k). - Ilya Gutkovskiy, Nov 06 2018
a(n) = Sum_{d|n, d>3} 1. - Wesley Ivan Hurt, Apr 28 2020
G.f.: Sum_{k>=1} x^(4*k)/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 17/6), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

A072528 Table T(n,k) read by rows, giving number of occurrences of the remainder k when n is divided by i=1,2,3,...,n.

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 2, 2, 1, 4, 1, 1, 2, 3, 1, 1, 4, 1, 2, 1, 3, 3, 1, 1, 1, 4, 2, 2, 1, 1, 2, 3, 2, 2, 1, 1, 6, 1, 2, 1, 1, 1, 2, 5, 1, 2, 1, 1, 1, 4, 1, 4, 1, 2, 1, 1, 4, 3, 1, 3, 1, 1, 1, 1, 5, 3, 2, 1, 2, 1, 1, 1, 2, 4, 3, 2, 1, 2, 1, 1, 1, 6, 1, 3, 2, 2, 1, 1, 1, 1, 2, 5, 1, 3, 2, 2, 1, 1, 1, 1, 6, 1, 4, 1, 2
Offset: 1

Views

Author

Amarnath Murthy, Aug 01 2002

Keywords

Comments

The n-th row adds to n.

Examples

			The table begins
1
2
2 1
3 1
2 2 1
4 1 1
2 3 1 1
4 1 2 1
		

Crossrefs

Cf. A023645 for T(n, 2) and A072527 for T(n, 3).

Formula

Let a(m) be the m-th term in the sequence. Then m=f(n)+k where f(1)=1 and f(n+1)=f(n)+floor((n+1)/2). n is the number being divided by the various i's and k is the remainder under consideration. f(n) has the generating function F(x)= (x(1+2x^2-2x^3))/((1-x)^2(1+x^2)) - Bruce Corrigan (scentman(AT)myfamily.com), Oct 22 2002
G.f. for k-th column: Sum_{m>0} x^((k+1)*m+k)/(1-x^m). - Vladeta Jovovic, Dec 16 2002

Extensions

Edited by Bruce Corrigan (scentman(AT)myfamily.com), Oct 22 2002
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 25 2003
Showing 1-2 of 2 results.