cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A178601 a(n) = s(s(n)), where s(n) = sigma(n)-n = A001065(n).

Original entry on oeis.org

0, 0, 1, 0, 6, 0, 1, 3, 7, 0, 15, 0, 8, 4, 9, 0, 11, 0, 14, 1, 10, 0, 55, 6, 15, 1, 28, 0, 54, 0, 1, 9, 22, 1, 17, 0, 14, 1, 43, 0, 66, 0, 50, 15, 16, 0, 64, 7, 1, 11, 26, 0, 78, 1, 63, 1, 31, 0, 172, 0, 20, 1, 41, 1, 90, 0, 32, 13, 40, 0, 45, 0, 50, 8, 63, 1, 144, 0, 56, 50, 40, 0, 196, 1, 26, 15, 76, 0, 259, 11, 64, 13, 43, 6, 236, 0
Offset: 2

Views

Author

Roger L. Bagula, May 30 2010

Keywords

Crossrefs

Cf. A206708 (fixed points, union of A000396 and A063990). - Antti Karttunen, Nov 01 2017

Programs

  • Mathematica
    Table[Apply[ Plus, Divisors[Apply[ Plus, Divisors[n]] - n]] - (Apply[Plus, Divisors[n]] - n), {n, 0, 100}]
  • PARI
    A001065(n) = (sigma(n) - n);
    A178601(n) = A001065(A001065(n)); \\ Antti Karttunen, Nov 01 2017

Extensions

Edited by N. J. A. Sloane, May 30 2010
Terms a(0) and a(1) removed and more terms added by Antti Karttunen, Nov 01 2017

A247111 Integers k such that sigma(sigma(k) - k) = 2*k, where sigma is the sum of divisors, A000203.

Original entry on oeis.org

6, 28, 36, 496, 8128, 33550336, 8589869056
Offset: 1

Views

Author

Michel Marcus, Nov 19 2014

Keywords

Comments

That is, integers k such that A072869(k) = 2*k.
All perfect numbers (A000396) belong to this sequence.
Is there another term like 36 that is not perfect?
a(8) > 10^11. - Hiroaki Yamanouchi, Sep 11 2015
a(8) <= 137438691328. - David A. Corneth, Jun 04 2021

Examples

			For k=36, sigma(sigma(36)-36) = sigma(91-36) = sigma(55) = 72, hence 36 is in the sequence.
		

Crossrefs

Cf. A000203 (sigma(n)), A000396 (perfect numbers), A001065 (sigma(n)-n), A072869 (sigma(sigma(n)-n)).
Cf. also A019283, A326181, A342922.

Programs

  • Mathematica
    Select[Range[1,10000],DivisorSigma[1,DivisorSigma[1,#]-#]==2*#&] (* Julien Kluge, Sep 20 2016 *)
  • PARI
    isok(n) = (sigma(sigma(n) - n) == 2*n);

Extensions

a(7) from Michel Marcus, Nov 22 2014

A291881 Numbers n such that sigma(sigma(n)) = sigma(sigma(n)-n) + sigma(n); that is, f(g(n)) = g(f(n)) where f = A000203 and g = A001065.

Original entry on oeis.org

2, 38040, 51888, 236644, 260880, 3097024, 5283852, 5667312, 11777472, 46120848, 52981252, 69128640, 121352208, 330364848, 485906400, 662736600, 769422720, 1111869360, 1267978320, 1272335760, 1426817904, 1807128528, 2107406448, 2381691312, 2452404544, 2691587568
Offset: 1

Views

Author

Altug Alkan, Sep 05 2017

Keywords

Comments

Initial motivation for this sequence was that question: Can be an odd number k such that f(g(k)) = g(f(k)) where f = A000203 and g = A001065?
Non-abundant terms are 2, 236644, 52981252,...
If an odd term exists, it is larger than 2*10^11. - Giovanni Resta, Sep 15 2017

Examples

			38040 is a term because sigma(38040) = 114480 and sigma(114480) = sigma(76440) + 114480.
		

Crossrefs

Programs

  • Mathematica
    inQ[n_] :=  DivisorSigma[1, DivisorSigma[1, n]] == DivisorSigma[1, DivisorSigma[1, n] - n] + DivisorSigma[1, n]; (* Robert G. Wilson v, Sep 10 2017 *)
  • PARI
    a001065(n) = sigma(n)-n;
    isok(n) = sigma(a001065(n))==a001065(sigma(n));

A300658 Numbers m that divide sigma(sigma(m) - m) where sigma is the sum of divisors function (A000203).

Original entry on oeis.org

4, 6, 8, 28, 32, 36, 78, 84, 128, 168, 252, 496, 504, 532, 756, 1488, 2808, 3720, 4464, 5928, 8128, 8192, 13392, 24384, 61236, 73152, 78120, 131072, 183708, 217728, 219456, 425880, 458640, 524288, 1084752, 1834560, 2204280, 3254256, 6120432, 6386688, 11007360
Offset: 1

Views

Author

Jaroslav Krizek, Mar 24 2018

Keywords

Comments

Numbers m that divide A072869(m).
Numbers m such that sigma(sigma(m)-m) = k*m for k = 1 - 5:
k = 1: 4, 8, 32, 128, 8192, 131072, 524288, 2147483648, ... (A072868),
k = 2: 6, 28, 36, 496, 8128, 33550336, 8589869056, ... (A247111),
k = 3: 78, 532, ...,
k = 4: 84, 252, 756, 1488, 4464, 13392, 24384, 61236, 73152, ...,
k = 5: 168, 2808, 5928, 6120432, ...
Perfect numbers (A000396) are terms.
Corresponding values of (sigma(sigma(m) - m)) / m for numbers m from this sequence: 1, 2, 1, 2, 1, 2, 3, 4, 1, 5, 4, 2, 6, 3, 4, 4, 5, 7, 4, 5, 2, 1, 4, 4, 4, 4, 10, 1, 4, 8, 4, 12, 10, 1, 4, 11, 9, ...
Sequence of the smallest numbers k such that sigma(sigma(k) - k) = n*k for n >= 1: 4, 6, 78, 84, 168, 504, 3720, 217728, 2204280, 78120, 1834560, 425880, ...

Examples

			6 is a term because sigma(sigma(6) - 6) / 6 = 12 / 6 = 2 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..1000000] | SumOfDivisors(SumOfDivisors(n)- n) mod n eq 0];
    
  • PARI
    isok(n) = (n!=1) && !(sigma(sigma(n)-n) % n); \\ Michel Marcus, Mar 25 2018
Showing 1-4 of 4 results.