A028374 Numbers that have only curved digits {0, 3, 6, 8, 9} or digits that are both curved and linear {2, 5}.
0, 2, 3, 5, 6, 8, 9, 20, 22, 23, 25, 26, 28, 29, 30, 32, 33, 35, 36, 38, 39, 50, 52, 53, 55, 56, 58, 59, 60, 62, 63, 65, 66, 68, 69, 80, 82, 83, 85, 86, 88, 89, 90, 92, 93, 95, 96, 98, 99, 200, 202, 203, 205, 206, 208, 209, 220, 222, 223, 225, 226, 228, 229, 230, 232, 233
Offset: 1
Examples
From _K. D. Bajpai_, Sep 07 2014: (Start) 206 is in the sequence because it has only curved digits 2, 0 and 6. 208 is in the sequence because it has only curved digits 2, 0 and 8. 2035689 is the smallest number having all the curved digits. (End)
Links
Crossrefs
Programs
-
Magma
[n: n in [0..300] | Set(Intseq(n)) subset [0,2,3,5, 6,8,9] ]; // Vincenzo Librandi, Sep 19 2014
-
Maple
N:= 3: S:= {0, 2, 3, 5, 6, 8, 9}: K:= S: for j from 2 to N do K:= map(t -> seq(10*t+s, s=S), K); od: print( K); # K. D. Bajpai, Sep 07 2014
-
Mathematica
f[n_] := Block[{id = IntegerDigits[n], curve = {0, 2, 3, 5, 6, 8, 9}}, If[ Union[ Join[id, curve]] == curve, True, False]]; Select[ Range[0, 240], f[ # ] & ] Select[Range[0, 249], Union[DigitCount[#] * {1, 0, 0, 1, 0, 0, 1, 0, 0, 0}] == {0} &] (* Alonso del Arte, May 23 2014 *) Select[Range[0,500],Intersection[IntegerDigits[#],{1,4,7}]=={}&] (* K. D. Bajpai, Sep 07 2014 *)
-
Python
for n in range(10**3): s = str(n) if not (s.count('1') + s.count('4') + s.count('7')): print(n,end=', ') # Derek Orr, Sep 19 2014
Extensions
Corrected and extended by Rick L. Shepherd, May 21 2003
Offset corrected by Arkadiusz Wesolowski, Aug 15 2011
Definition clarified by Bernard Schott, Mar 25 2023
Comments