A048699 Nonprime numbers whose sum of aliquot divisors (A001065) is a perfect square.
1, 9, 12, 15, 24, 26, 56, 75, 76, 90, 95, 119, 122, 124, 140, 143, 147, 153, 176, 194, 215, 243, 287, 332, 363, 386, 407, 477, 495, 507, 511, 524, 527, 536, 551, 575, 688, 738, 791, 794, 815, 867, 871, 892, 924, 935, 963, 992, 1075, 1083, 1159, 1196, 1199, 1295, 1304
Offset: 1
Examples
a(3)=15; aliquot divisors are 1,3,5; sum of aliquot divisors = 9 and 3^2=9.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a := []; for n from 1 to 2000 do if sigma(n) <> n+1 and issqr(sigma(n)-n) then a := [op(a), n]; fi; od: a;
-
Mathematica
nn=1400;Select[Complement[Range[nn],Prime[Range[PrimePi[nn]]]],IntegerQ[ Sqrt[DivisorSigma[1,#]-#]]&] (* Harvey P. Dale, Apr 25 2011 *)
-
PARI
isok(k) = !ispseudoprime(k) && issquare(sigma(k) - k); \\ Michel Marcus, May 13 2025
Comments