A123725
Numerators of fractional partial quotients appearing in a continued fraction for the power series Sum_{n>=0} x^(2^n - 1)/(n+1)^s.
Original entry on oeis.org
1, 2, -3, -2, -4, 2, 3, -2, -5, 2, -3, -2, 4, 2, 3, -2, -6, 2, -3, -2, -4, 2, 3, -2, 5, 2, -3, -2, 4, 2, 3, -2, -7, 2, -3, -2, -4, 2, 3, -2, -5, 2, -3, -2, 4, 2, 3, -2, 6, 2, -3, -2, -4, 2, 3, -2, 5, 2, -3, -2, 4, 2, 3, -2, -8, 2, -3, -2, -4, 2, 3, -2, -5, 2, -3, -2, 4, 2, 3, -2, -6, 2, -3, -2, -4, 2, 3, -2, 5, 2, -3, -2, 4, 2, 3, -2, 7, 2, -3, -2, -4, 2
Offset: 0
Surprisingly, the following analog of the Riemann zeta function:
Z(x,s) = Sum_{n>=0} x^(2^n-1)/(n+1)^s = 1 + x/2^s + x^3/3^s +x^7/4^s+..
may be expressed by the continued fraction:
Z(x,s) = [1; f(1)^s/x, -f(2)^s/x, -f(3)^s/x,...,f(n)^s*(-1)^e(n)/x,...]
such that the (2^n-1)-th convergent = Sum_{k=0..n} x^(2^k-1)/(k+1)^s,
where f(n) = (b(n)+2)/(b(n)+1)^2 and e(n) = A073089(n+1) for n>=1,
and b(n) = A007814(n) the exponent of highest power of 2 dividing n.
Thus a(n) = (A007814(n) + 2)*(-1)^A073089(n+1) are numerators and
A123726(n) = (A007814(n) + 1)^2 are denominators of partial quotients.
Case s=1.
Sum_{n>=0} x^(2^n-1)/(n+1) = [1; 2/x, -(3/4)/x, -2/x, -(4/9)/x, 2/x,
(3/4)/x, -2/x, -(5/16)/x, 2/x, -(3/4)/x, -2/x, (4/9)/x, 2/x, (3/4)/x,
-2/x, -(6/25)/x, 2/x, -(3/4)/x, -2/x, -(4/9)/x, 2/x, (3/4)/x, -2/x,...].
Note that (2^n-1)-th convergents exactly equal n-th partial sums:
[1;2/x] = 1 + x/2;
[1;2/x,-(3/4)/x,-2/x] = 1 + x/2 + x^3/3;
[1;2/x,-(3/4)/x,-2/x,-(4/9)/x,2/x,(3/4)/x,-2/x] = 1 +x/2 +x^3/3 +x^7/4.
Case s=2.
Sum_{n>=0} x^(2^n-1)/(n+1)^2 = [1; 4/x, -(9/16)/x, -4/x, -(16/81)/x,
4/x, (9/16)/x, -4/x, -(25/256)/x, 4/x, -(9/16)/x, -4/x, (16/81)/x, 4/x,
(9/16)/x, -4/x, -(36/625)/x, 4/x, -(9/16)/x, -4/x, (16/81)/x, 4/x ...].
Note that (2^n-1)-th convergents exactly equal n-th partial sums:
[1;4/x] = 1 + x/4;
[1;4/x,-(9/16)/x,-4/x] = 1 + x/4 + x^3/9;
[1;4/x,-(9/16)/x,-4/x,-(16/81)/x,4/x,(9/16)/x,-4/x]=1+x/4+x^3/9+x^7/16.
Case s=3.
Sum_{n>=0} x^(2^n-1)/(n+1)^3 = [1; 8/x,-(27/64)/x,-8/x,-(64/729)/x,8/x,
(27/64)/x,-8/x,-(125/4096)/x, 8/x,-(27/64)/x,-8/x, (64/729)/x, 8/x,
(27/64)/x,-8/x,-(216/15625)/x, 8/x, -(27/64)/x, -8/x, (64/729)/x ...].
Likewise, the (2^n-1)-th convergents exactly equal n-th partial sums.
It is conjectured that these patterns continue for all s.
-
{a(n)=numerator(subst(contfrac(sum(m=0,#binary(n),1/x^(2^m-1)/(m+1)),n+3)[n+1],x,1))}
-
A007814(n) = valuation(n,2);
A073089(n) = { if(n<=1, return(0)); n-=1; my(v=2^valuation(n, 2)); return((0==bitand(n, v<<1)) != (v%2)); }; \\ From A073089
A123725(n) = if(!n,1,(A007814(n) + 2) * (-1)^A073089(n+1)); \\ Antti Karttunen, Nov 01 2018
A317538
Indices m for which A317413(m) = 1.
Original entry on oeis.org
1, 4, 6, 9, 12, 16, 19, 21, 24, 28, 30, 33, 37, 40, 43, 45, 48, 52, 54, 57, 60, 64, 67, 69, 73, 76, 78, 81, 85, 88, 91, 93, 96, 100, 102, 105, 108, 112, 115, 117, 120, 124, 126, 129, 133, 136, 139, 141, 145, 148, 150, 153, 156, 160, 163, 165, 169, 172, 174, 177, 181, 184, 187, 189, 192, 196, 198, 201, 204
Offset: 1
-
n, f, i, p, q, base = 1, 1, 0, 0, 1, 2
while i < 10000000:
i, p, q = i+1, p*base, q*base
if i == f:
p, n = p+1, n+1
f = f*n
n, a, j = 0, 0, 0
while p%q > 0:
a, f, p, q = a+1, p//q, q, p%q
if f == 1:
n = n+1
print(n, a-1)
A123726
Denominators of fractional partial quotients appearing in a continued fraction for the power series Sum_{n>=0} x^(2^n - 1)/(n+1)^s.
Original entry on oeis.org
1, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 25, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 36, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 25, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 49, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 25, 1, 4, 1, 9, 1, 4, 1, 16, 1, 4, 1, 9, 1, 4, 1, 36, 1, 4
Offset: 0
Surprisingly, the following analog of the Riemann zeta function:
Z(x,s) = Sum_{n>=0} x^(2^n-1)/(n+1)^s = 1 + x/2^s + x^3/3^s +x^7/4^s+..
may be expressed by the continued fraction:
Z(x,s) = [1; f(1)^s/x, -f(2)^s/x, -f(3)^s/x,...,f(n)^s*(-1)^e(n)/x,...]
such that the (2^n-1)-th convergent = Sum_{k=0..n} x^(2^k-1)/(k+1)^s,
where f(n) = (b(n)+2)/(b(n)+1)^2 and e(n) = A073089(n+1) for n>=1,
and b(n) = A007814(n) the exponent of highest power of 2 dividing n.
-
[1] cat [(Valuation(n, 2) + 1)^2: n in [1..50]]; // G. C. Greubel, Nov 01 2018
-
Join[{1}, Table[(1 + IntegerExponent[n, 2])^2, {n, 1, 50}]] (* G. C. Greubel, Nov 01 2018 *)
-
{a(n)=denominator(subst(contfrac(sum(m=0,#binary(n),1/x^(2^m-1)/(m+1)),n+3)[n+1],x,1))}
-
/* a(n) = (A007814(n)+1)^2: */ {a(n)=if(n==0,1,(valuation(n,2)+1)^2)}
A110037
Signed version of A090678 and congruent to A088567 mod 2.
Original entry on oeis.org
1, 1, -1, 0, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, 0, -1, 1, 0, -1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 1, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, -1, 0, 1, -1, 0, 1, 0, 0, -1, 0, 1, -1, 0, 0, 1, 0, -1, 1, 0, -1, 0, 1, 0, 0, -1, 1, 0, -1, 0, 0, 1, 0, -1, 0
Offset: 0
-
{a(n)=polcoeff(A=1+x-x^2*(1+x)/(1+x^2)+ sum(k=1,#binary(n),x^(3*2^(k-1))/prod(j=0,k,1+x^(2^j)+x*O(x^n))),n)}
A081769
a(n)-th term of the continued fraction for sum(k>=0,1/2^(2^k)) is 2.
Original entry on oeis.org
5, 13, 18, 23, 25, 30, 38, 43, 45, 53, 58, 60, 65, 70, 78, 83, 85, 93, 98, 103, 105, 110, 118, 120, 125, 133, 138, 140, 145, 150, 158, 163, 165, 173, 178, 183, 185, 190, 198, 203, 205, 213, 218, 220, 225, 230, 238, 240, 245, 253, 258, 263, 265, 270, 278, 280
Offset: 1
The continued fraction for sum(k>=0,1/2^(2^k)) is : 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1... hence a(1)=5
Showing 1-5 of 5 results.
Comments