cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A073492 Numbers having at least one prime gap in their factorization.

Original entry on oeis.org

10, 14, 20, 21, 22, 26, 28, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 55, 56, 57, 58, 62, 63, 65, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 115, 116, 117, 118, 119, 122, 123, 124, 126
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A073490(a(n)) > 0.
A137794(a(n))=0, complement of A073491. - Reinhard Zumkeller, Feb 11 2008

Crossrefs

Programs

  • Haskell
    a073492 n = a073492_list !! (n-1)
    a073492_list = filter ((> 0) . a073490) [1..]
    -- Reinhard Zumkeller, Dec 20 2013
  • Mathematica
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Select[Range[126],Total[pa @@@ Partition[First /@ FactorInteger[#], 2, 1]] > 0 &] (* Jayanta Basu, Jul 01 2013 *)

A073485 Product of any number of consecutive primes; squarefree numbers with no gaps in their prime factorization.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 19, 23, 29, 30, 31, 35, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 77, 79, 83, 89, 97, 101, 103, 105, 107, 109, 113, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 210, 211, 221, 223, 227, 229, 233
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A073484(a(n)) = 0 and A073483(a(n)) = 1;
See A097889 for composite terms. - Reinhard Zumkeller, Mar 30 2010
A169829 is a subsequence. - Reinhard Zumkeller, May 31 2010
a(A192280(n)) = 1: complement of A193166.
Also fixed points of A053590: a(n) = A053590(a(n)). - Reinhard Zumkeller, May 28 2012
The Heinz numbers of the partitions into distinct consecutive integers. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product_{j=1..r} prime(p_j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). Example: (i) 15 (= 3*5) is in the sequence because it is the Heinz number of the partition [2,3]; (ii) 10 (= 2*5) is not in the sequence because it is the Heinz number of the partition [1,3]. - Emeric Deutsch, Oct 02 2015
Except for the term 1, each term can uniquely represented as A002110(k)/A002110(m) for k > m >= 0; 1 = A002110(k)/A002110(k) for all k. - Michel Marcus and Jianing Song, Jun 19 2019

Examples

			105 is a term, as 105 = 3*5*7 with consecutive prime factors.
		

Crossrefs

Complement: A193166.
Intersection of A005117 and A073491.
Subsequence of A277417.
Cf. A000040, A006094, A002110, A097889, A169829 (subsequences).
Cf. A096334.

Programs

  • Haskell
    a073485 n = a073485_list !! (n-1)
    a073485_list = filter ((== 1) . a192280) [1..]
    -- Reinhard Zumkeller, May 28 2012, Aug 26 2011
    
  • Maple
    isA073485 := proc(n)
        local plist,p,i ;
        plist := sort(convert(numtheory[factorset](n),list)) ;
        for i from 1 to nops(plist) do
            p := op(i,plist) ;
            if modp(n,p^2) = 0 then
                return false;
            end if;
            if i > 1 then
                if nextprime(op(i-1,plist)) <> p then
                    return false;
                end if;
            end if;
        end do:
        true;
    end proc:
    for n from 1 to 1000 do
        if isA073485(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Jan 12 2016
    # second Maple program:
    q:= proc(n) uses numtheory; n=1 or issqrfree(n) and (s->
          nops(s)=1+pi(max(s))-pi(min(s)))(factorset(n))
        end:
    select(q, [$1..288])[];  # Alois P. Heinz, Jan 27 2022
  • Mathematica
    f[n_] := FoldList[ Times, 1, Prime[ Range[n, n + 3]]]; lst = {}; k = 1; While[k < 55, AppendTo[lst, f@k]; k++ ]; Take[ Union@ Flatten@ lst, 65] (* Robert G. Wilson v, Jun 11 2010 *)
  • PARI
    list(lim)=my(v=List(primes(primepi(lim))),p,t);for(e=2, log(lim+.5)\log(2), p=1; t=prod(i=1,e-1,prime(i)); forprime(q=prime(e), lim, t*=q/p; if(t>lim,next(2)); listput(v,t); p=nextprime(p+1))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Oct 24 2012

Formula

a(n) ~ n log n. - Charles R Greathouse IV, Oct 24 2012

Extensions

Alternative description added to the name by Antti Karttunen, Oct 29 2016

A073490 Number of prime gaps in factorization of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A137723(n) is the smallest number of the first occurring set of exactly n consecutive numbers with at least one prime gap in their factorization: a(A137723(n)+k)>0 for 0<=kA137723(n)-1)=a(A137723(n)+n)=0. - Reinhard Zumkeller, Feb 09 2008

Examples

			84 = 2*2*3*7 with one gap between 3 and 7, therefore a(84) = 1;
110 = 2*5*11 with two gaps: between 2 and 5 and between 5 and 11, therefore a(110) = 2.
		

Crossrefs

Programs

  • Haskell
    a073490 1 = 0
    a073490 n = length $ filter (> 1) $ zipWith (-) (tail ips) ips
       where ips = map a049084 $ a027748_row n
    -- Reinhard Zumkeller, Jul 04 2012
    
  • Maple
    A073490 := proc(n)
        local a,plist ;
        plist := sort(convert(numtheory[factorset](n),list)) ;
        a := 0 ;
        for i from 2 to nops(plist) do
            if op(i,plist) <> nextprime(op(i-1,plist)) then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc:
    seq(A073490(n),n=1..110) ; # R. J. Mathar, Oct 27 2019
  • Mathematica
    gaps[n_Integer/;n>0]:=If[n===1, 0, Complement[Prime[PrimePi[Rest[ # ]]-1], # ]&[First/@FactorInteger[n]]]; Table[Length[gaps[n]], {n, 1, 120}] (* Wouter Meeussen, Oct 30 2004 *)
    pa[n_, k_] := If[k == NextPrime[n], 0, 1]; Table[Total[pa @@@ Partition[First /@ FactorInteger[n], 2, 1]], {n, 120}] (* Jayanta Basu, Jul 01 2013 *)
  • Python
    from sympy import primefactors, nextprime
    def a(n):
        pf = primefactors(n)
        return sum(p2 != nextprime(p1) for p1, p2 in zip(pf[:-1], pf[1:]))
    print([a(n) for n in range(1, 121)]) # Michael S. Branicky, Oct 14 2021

Formula

a(n) = A073484(A007947(n)).
a(A000040(n))=0; a(A000961(n))=0; a(A006094(n))=0; a(A002110(n))=0; a(A073485(n))=0.
a(A073486(n))>0; a(A073487(n)) = 1; a(A073488(n))=2; a(A073489(n))=3.
a(n)=0 iff A073483(n) = 1.
a(A097889(n)) = 0. - Reinhard Zumkeller, Nov 20 2004
0 <= a(m*n) <= a(m) + a(n) + 1. A137794(n) = 0^a(n). - Reinhard Zumkeller, Feb 11 2008

Extensions

More terms from Franklin T. Adams-Watters, May 19 2006

A073484 Number of gaps in factors of the n-th squarefree number.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 2, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Examples

			The 69th squarefree number is 110=2*5*11, therefore a(69)=2, as there are two gaps: between 2 and 5 and between 5 and 11.
		

Crossrefs

Programs

  • Mathematica
    gaps[n_] := SequenceCount[FactorInteger[n][[;; , 1]], {p1_, p2_} /; p2 != NextPrime[p1], Overlaps -> True]; gaps /@ Select[Range[200], SquareFreeQ] (* Amiram Eldar, Apr 10 2021 *)

Formula

a(A000040(n))=0; a(A006094(n))=0; a(A002110(n))=0; a(A073485(n))=0.
a(A073486(n))>0; a(A073487(n))=1; a(A073488(n))=2; a(A073489(n))=3.
a(n)=0 iff A073483(n)=1.

A073488 Squarefree numbers having exactly two prime gaps.

Original entry on oeis.org

110, 130, 170, 182, 190, 230, 238, 266, 273, 290, 310, 322, 357, 370, 374, 399, 406, 410, 418, 430, 434, 470, 483, 494, 506, 518, 530, 546, 561, 574, 590, 598, 602, 609, 610, 627, 638, 651, 658, 670, 682, 710, 714, 730, 741, 742, 754, 759, 777, 782, 790
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Examples

			1430 is a term, as 1430 = 2*5*11*13 with two gaps: between 2 and 5 and between 5 and 11.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := SequenceCount[FactorInteger[n][[;; , 1]], {p1_, p2_} /; p2 != NextPrime[p1], Overlaps -> True] == 2; Select[Range[800], SquareFreeQ[#] && q[#] &] (* Amiram Eldar, Apr 10 2021 *)

Formula

A073484(a(n)) = 2.

A073489 Squarefree numbers having exactly three prime gaps.

Original entry on oeis.org

1870, 2090, 2470, 2530, 2990, 3190, 3410, 3458, 3770, 3910, 4030, 4070, 4186, 4510, 4730, 4810, 4930, 5170, 5187, 5270, 5278, 5330, 5474, 5510, 5590, 5642, 5830, 5890, 6110, 6279, 6290, 6490, 6710, 6734, 6890, 6902, 6970, 7030, 7130, 7310, 7370, 7378
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Examples

			1870 is a term, as 1870 = 2*5*11*17 = with three gaps: between 2 and 5, between 5 and 11 and between 11 and 17.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := SequenceCount[FactorInteger[n][[;; , 1]], {p1_, p2_} /; p2 != NextPrime[p1], Overlaps -> True] == 3; Select[Range[7500], SquareFreeQ[#] && q[#] &] (* Amiram Eldar, Apr 10 2021 *)
    sfQ[n_]:=SquareFreeQ[n]&&Total[Boole[NextPrime[#[[1]]]!=#[[2]]&/@ Partition[ FactorInteger[n][[All,1]],2,1]]]==3; Select[Range[7500],sfQ] (* Harvey P. Dale, Aug 29 2021 *)

Formula

A073484(a(n)) = 3.

A073487 Squarefree numbers having exactly one prime gap.

Original entry on oeis.org

10, 14, 21, 22, 26, 33, 34, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 78, 82, 85, 86, 87, 91, 93, 94, 95, 102, 106, 111, 114, 115, 118, 119, 122, 123, 129, 133, 134, 138, 141, 142, 145, 146, 154, 155, 158, 159, 161, 165, 166, 174, 177, 178, 183, 185
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

A073484(a(n)) = 1.

Examples

			78 is a term, as 78 = 2*3*13 with one gap between 3 and 13.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    Res:= NULL:
    for a from 1 to numtheory:-pi(isqrt(N)) do
      for b from a do
        p:= mul(ithprime(i),i=a..b);
        if p > N/ithprime(b+2) then break fi;
        for c from b+2 while p*ithprime(c) <= N do
          for d from c do
            q:= mul(ithprime(i),i=c..d);
            if p*q > N then break fi;
            Res:= Res, p*q;
          od
        od
      od
    od:
    sort([Res]); # Robert Israel, Apr 20 2017
  • Mathematica
    okQ[n_] := SquareFreeQ[n] && Length[SequencePosition[FactorInteger[n][[All, 1]], {p_?PrimeQ, q_?PrimeQ} /; q != NextPrime[p]]] == 1;
    Select[Range[200], okQ] (* Jean-François Alcover, Feb 28 2019 *)

A193166 Numbers that are not the product of consecutive primes.

Original entry on oeis.org

4, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 32, 33, 34, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 26 2011

Keywords

Comments

A192280(a(n)) = 0: complement of A073485.
Union of A013929 and A073486.

Crossrefs

Cf. A025475.

Programs

  • Haskell
    a193166 n = a193166_list !! (n-1)
    a193166_list = filter ((== 0) . a192280) [1..]
    -- Reinhard Zumkeller, May 28 2012, Aug 26 2011

A367768 Numbers k such that MMK(k) = MMK(i) for some i < k, where MMK is multiset multiplicity kernel A367580.

Original entry on oeis.org

4, 8, 9, 10, 14, 16, 18, 21, 22, 24, 25, 26, 27, 32, 33, 34, 36, 38, 39, 40, 42, 46, 48, 49, 50, 51, 54, 55, 56, 57, 58, 62, 64, 65, 66, 69, 70, 72, 74, 75, 78, 80, 81, 82, 84, 85, 86, 87, 88, 91, 93, 94, 95, 96, 98, 100, 102, 104, 106, 108, 110, 111, 112, 114
Offset: 1

Views

Author

Gus Wiseman, Dec 01 2023

Keywords

Comments

We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.

Examples

			The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   14: {1,4}
   16: {1,1,1,1}
   18: {1,2,2}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   25: {3,3}
   26: {1,6}
   27: {2,2,2}
   32: {1,1,1,1,1}
   33: {2,5}
   34: {1,7}
   36: {1,1,2,2}
		

Crossrefs

The squarefree case is A073486, complement A073485.
The MMK triangle is A367579, sum A367581, min A055396, max A367583.
Sorted positions of non-first appearances in A367580.
The complement is A367585, sorted version of A367584.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives prime signature, sorted A118914.

Programs

  • Mathematica
    nn=100;
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    qq=Table[Times@@mmk[Join @@ ConstantArray@@@FactorInteger[n]],{n,nn}];
    Select[Range[nn], MemberQ[Take[qq,#-1], qq[[#]]]&]

Formula

A367580(a(k)) = A367580(i) for some i < a(k).
Showing 1-9 of 9 results.