A073577 a(n) = 4*n^2 + 4*n - 1.
7, 23, 47, 79, 119, 167, 223, 287, 359, 439, 527, 623, 727, 839, 959, 1087, 1223, 1367, 1519, 1679, 1847, 2023, 2207, 2399, 2599, 2807, 3023, 3247, 3479, 3719, 3967, 4223, 4487, 4759, 5039, 5327, 5623, 5927, 6239, 6559, 6887, 7223, 7567, 7919, 8279, 8647
Offset: 1
Examples
a(2) = 8*2 + 7 = 23; a(3) = 8*3 + 23 = 47; a(4) = 8*4 + 47 = 79. - _Vincenzo Librandi_, Aug 08 2010
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, The Bateman-Horn Conjecture: Heuristics, History, and Applications, Expositiones Mathematicae, Vol. 38, No. 4 (2020), pp. 430-479; arXiv preprint, arXiv:1807.08899 [math.NT], 2018-2019. See 6.6.7, p. 36 (p. 35 in the preprint).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([1..50],n->4*n^2+4*n-1); # Muniru A Asiru, Nov 01 2018
-
Magma
[4*n^2 + 4*n - 1: n in [1..50]]; // Wesley Ivan Hurt, Apr 18 2016
-
Maple
seq(4*n^2+4*n-1,n=1..100); # Robert Israel, Jan 13 2015
-
Mathematica
Table[4*n^2+4*n-1,{n,60}] (* Vladimir Joseph Stephan Orlovsky, Nov 18 2009 *) LinearRecurrence[{3,-3,1},{7,23,47},50] (* Harvey P. Dale, Dec 04 2018 *)
-
Maxima
A073577(n):=4*n^2+4*n-1$ makelist(A073577(n),n,1,30); /* Martin Ettl, Nov 01 2012 */
-
PARI
vector(50, n, 4*n^2 + 4*n - 1) \\ Michel Marcus, Jan 14 2015
-
Python
for n in range(1,50): print(4*n**2+4*n-1, end=', ') # Stefano Spezia, Nov 01 2018
Formula
a(n) = FrobeniusNumber(2*n+1, 2*n+3). - Darrell Minor, Jul 29 2008
a(n) = 8*n + a(n-1) (with a(1)=7). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(7+2*x-x^2)/(1-x)^3. - Robert Israel, Jan 13 2015
E.g.f.: 1 - (1-8*x-4*x^2)*exp(x). - Robert Israel, Jan 13 2015
a(n+1) = a(n) + A008590(n+1), a(1) = 7. - Altug Alkan, Sep 28 2015
a(n) = (2*n+1)+(2*n-1) + (2*n+1)*(2*n-1). - J. M. Bergot, Apr 17 2016
a(n) = (2*n+1)^2 - 2. - Zhandos Mambetaliyev, Jun 13 2017
From Stefano Spezia, Nov 04 2018: (Start)
L.g.f.: 4*x*(2+x)/(1+x)^2-log(1+x).
L.h.g.f.: -4*(-2+x)*x/(-1+x)^2+log(1-x).
(End)
Sum_{n>=1} 1/a(n) = 1 + sqrt(2)*Pi*tan(Pi/sqrt(2))/8. - Amiram Eldar, Jan 03 2021
Extensions
Edited and extended by Henry Bottomley, Oct 10 2002
Comments