cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073577 a(n) = 4*n^2 + 4*n - 1.

Original entry on oeis.org

7, 23, 47, 79, 119, 167, 223, 287, 359, 439, 527, 623, 727, 839, 959, 1087, 1223, 1367, 1519, 1679, 1847, 2023, 2207, 2399, 2599, 2807, 3023, 3247, 3479, 3719, 3967, 4223, 4487, 4759, 5039, 5327, 5623, 5927, 6239, 6559, 6887, 7223, 7567, 7919, 8279, 8647
Offset: 1

Views

Author

M. N. Deshpande (dpratap(AT)nagpur.dot.net.in), Aug 27 2002

Keywords

Comments

The sum of the squares of two consecutive terms multiplied (or divided) by 2 is always a perfect square. In general, numbers represented by the quadratic form a(n) = (2*i*n + j)^2 - 2*i^2 for any i and j have 2*(a(n)^2 + a(n+1)^2) and (a(n)^2 + a(n+1)^2)/2 as perfect squares: in this case, i=j=1.
The terms of this sequence may be seen to be 2 less than the odd squares. As such they run parallel to those in the square spiral as well as the Ulam square spiral. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Oct 01 2002
Primes in the sequence are in A028871. - Russ Cox, Aug 26 2019
The continued fraction expansion of sqrt(4*a(n)) is [4n+1; {1, n-1, 2, 2n, 2, n-1, 1, 8n+2}]. For n=1, this collapses to [5; {3, 2, 3, 10}]. - Magus K. Chu, Sep 12 2022

Examples

			a(2) = 8*2 + 7 = 23;
a(3) = 8*3 + 23 = 47;
a(4) = 8*4 + 47 = 79. - _Vincenzo Librandi_, Aug 08 2010
		

Crossrefs

Programs

Formula

a(n) = FrobeniusNumber(2*n+1, 2*n+3). - Darrell Minor, Jul 29 2008
a(n) = 8*n + a(n-1) (with a(1)=7). - Vincenzo Librandi, Aug 08 2010
G.f.: x*(7+2*x-x^2)/(1-x)^3. - Robert Israel, Jan 13 2015
E.g.f.: 1 - (1-8*x-4*x^2)*exp(x). - Robert Israel, Jan 13 2015
a(n+1) = a(n) + A008590(n+1), a(1) = 7. - Altug Alkan, Sep 28 2015
a(n) = (2*n+1)+(2*n-1) + (2*n+1)*(2*n-1). - J. M. Bergot, Apr 17 2016
a(n) = (2*n+1)^2 - 2. - Zhandos Mambetaliyev, Jun 13 2017
From Stefano Spezia, Nov 04 2018: (Start)
L.g.f.: 4*x*(2+x)/(1+x)^2-log(1+x).
L.h.g.f.: -4*(-2+x)*x/(-1+x)^2+log(1-x).
(End)
Sum_{n>=1} 1/a(n) = 1 + sqrt(2)*Pi*tan(Pi/sqrt(2))/8. - Amiram Eldar, Jan 03 2021

Extensions

Edited and extended by Henry Bottomley, Oct 10 2002