cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A308509 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals, where A(n,k) is Sum_{d|n} d^(k*n/d).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 9, 2, 1, 17, 28, 33, 6, 4, 1, 33, 82, 129, 26, 24, 2, 1, 65, 244, 513, 126, 182, 8, 4, 1, 129, 730, 2049, 626, 1458, 50, 41, 3, 1, 257, 2188, 8193, 3126, 11954, 344, 577, 37, 4, 1, 513, 6562, 32769, 15626, 99594, 2402, 8705, 811, 68, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 02 2019

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,     1,     1,      1, ...
   2,  3,   5,    9,    17,    33,     65, ...
   2,  4,  10,   28,    82,   244,    730, ...
   3,  9,  33,  129,   513,  2049,   8193, ...
   2,  6,  26,  126,   626,  3126,  15626, ...
   4, 24, 182, 1458, 11954, 99594, 840242, ...
		

Crossrefs

Columns k=0..3 give A000005, A055225, A073705, A073706.
Cf. A294579.

Programs

  • Mathematica
    T[n_, k_] := DivisorSum[n, #^(k*n/#) &]; Table[T[k, n - k], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, May 11 2021 *)
  • PARI
    T(n,k) = sumdiv(n, d, (n/d)^(k*d));
    matrix(9, 9, n, k, T(n,k-1)) \\ Michel Marcus, Jun 02 2019

Formula

L.g.f. of column k: -log(Product_{j>=1} (1 - j^k*x^j)^(1/j)).
A(n,k) = Sum_{d|n} (n/d)^(k*d).

A308696 a(n) = Sum_{d|n} d^(2*d).

Original entry on oeis.org

1, 17, 730, 65553, 9765626, 2176783082, 678223072850, 281474976776209, 150094635296999851, 100000000000009765642, 81402749386839761113322, 79496847203390846310290154, 91733330193268616658399616010, 123476695691247935826908004929122
Offset: 1

Views

Author

Seiichi Manyama, Jun 17 2019

Keywords

Crossrefs

Column k=2 of A308698.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(2*#) &]; Array[a, 14] (* Amiram Eldar, May 09 2021 *)
  • PARI
    {a(n) = sumdiv(n, d, d^(2*d))}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k-1)))))
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, k^(2*k)*x^k/(1-x^k)))

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k-1))) = Sum_{k>=1} a(k)*x^k/k.
G.f.: Sum_{k>=1} k^(2*k) * x^k/(1 - x^k).

A151954 Expansion of Product_{k>0} (1-k^2*x^k)^(-1/k).

Original entry on oeis.org

1, 1, 3, 6, 16, 27, 79, 126, 331, 632, 1436, 2509, 6800, 11218, 26044, 51958, 114941, 205183, 502228, 875545, 2027193, 3963938, 8389190, 15504996, 37555290, 66502859, 145809046, 292860564, 621638120, 1156065731, 2701045579
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1-k^2*x^k)^(-1/k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 05 2017 *)

Formula

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} A073705(k)*a(n-k) for n > 0. - Seiichi Manyama, Nov 05 2017
From Vaclav Kotesovec, Nov 05 2017: (Start)
a(n) ~ c * 3^(2*n/3) / n^(2/3), where
c = 4.674336739118905298732313884863019... if mod(n,3)=0
c = 4.299861572054701010776554223312792... if mod(n,3)=1
c = 4.239106098573472870377481583112857... if mod(n,3)=2
(End)

A308570 a(n) = sigma_{2*n}(n).

Original entry on oeis.org

1, 17, 730, 65793, 9765626, 2177317874, 678223072850, 281479271743489, 150094635684419611, 100000095367432689202, 81402749386839761113322, 79496851942053939878082786, 91733330193268616658399616010, 123476696151234472370970011268514
Offset: 1

Views

Author

Seiichi Manyama, Jun 08 2019

Keywords

Crossrefs

Diagonal of A308504.
Column k=2 of A308569.
Cf. A073705.

Programs

  • Mathematica
    Table[DivisorSigma[2 n, n], {n, 1, 20}] (* Vaclav Kotesovec, Jun 08 2019 *)
  • PARI
    {a(n) = sigma(n, 2*n)}
    
  • PARI
    N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-(k^2*x)^k)^(1/k)))))

Formula

L.g.f.: -log(Product_{k>=1} (1 - (k^2*x)^k)^(1/k)) = Sum_{k>=1} a(k)*x^k/k.
a(n) ~ n^(2*n). - Vaclav Kotesovec, Jun 08 2019

A073706 a(n) = Sum_{ d divides n } (n/d)^(3d).

Original entry on oeis.org

1, 9, 28, 129, 126, 1458, 344, 8705, 20413, 49394, 1332, 1104114, 2198, 2217546, 16305408, 33820673, 4914, 532253187, 6860, 2392632274, 10500716072, 8591716802, 12168, 422182489826, 30517593751, 549760658274, 7625984925160
Offset: 1

Views

Author

Paul D. Hanna, Aug 04 2002

Keywords

Examples

			a(10) = (10/1)^(3*1) +(10/2)^(3*2) +(10/5)^(3*5) +(10/10)^(3*10) = 49394 because positive divisors of 10 are 1, 2, 5, 10.
		

Crossrefs

Sum_{ d divides n } (n/d)^(k*d): A000005 (k=0), A055225 (k=1), A073705 (k=2), this sequence (k=3).

Programs

  • Mathematica
    Table[Total[Quotient[n, x = Divisors[n]]^(3*x)], {n, 27}] (* Jayanta Basu, Jul 08 2013 *)

Formula

G.f.: Sum_{n>=1} -log(1 - (n^3)*x^n)/n = Sum_{n>=1} a(n) x^n/n.
G.f.: Sum_{k>=1} k^3*x^k/(1-k^3*x^k). - Benoit Cloitre, Apr 21 2003

A294620 Expansion of Product_{k>0} (1 - k^2*x^k)^(1/k).

Original entry on oeis.org

1, -1, -2, -1, -3, 7, -12, 32, -10, -15, 77, 187, -760, 846, 1382, -4197, 1371, 6650, -9991, 19220, -32439, -80889, 290596, 127853, -1372003, 913414, 3253746, -6728692, 2302327, 14461937, -46087740, 66588519, 15702643, -357119564, 752905288, 310992687
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2017

Keywords

Crossrefs

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k^2*x^k)^(1/k)))

Formula

a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} A073705(k)*a(n-k) for n > 0.
Showing 1-6 of 6 results.