cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073817 Tetranacci numbers with different initial conditions: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) starting with a(0)=4, a(1)=1, a(2)=3, a(3)=7.

Original entry on oeis.org

4, 1, 3, 7, 15, 26, 51, 99, 191, 367, 708, 1365, 2631, 5071, 9775, 18842, 36319, 70007, 134943, 260111, 501380, 966441, 1862875, 3590807, 6921503, 13341626, 25716811, 49570747, 95550687, 184179871, 355018116, 684319421, 1319068095, 2542585503
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 12 2002

Keywords

Comments

These tetranacci numbers follow the same pattern as Lucas and generalized tribonacci(A001644) numbers: Binet's formula is a(n) = r1^n + r2^n + r3^n + r4^n, with r1, r2, r3, r4 roots of the characteristic polynomial.
For n >= 4, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain four consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). For example, a(4)=15 because only the sequences 1110, 1101, 1011, 0111, 0011, 0101, 1001, 1010, 0110, 1100, 0001, 0010, 0100, 1000, 0000 avoid four consecutive ones on a circle. (For n=1,2,3 the statement is still true provided we allow the sequence to wrap around itself on a circle. For example, a(2)=3 because only the sequences 00, 01, 10 avoid four consecutive ones when wrapped around on a circle.) - Petros Hadjicostas, Dec 18 2016

Crossrefs

Cf. A000078, A001630, A001644, A000032, A106295 (Pisano periods). Two other versions: A001648, A074081.

Programs

  • GAP
    a:=[4,1,3,7];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3] +a[n-4]; od; a; # G. C. Greubel, Feb 19 2019
  • Magma
    I:=[4,1,3,7]; [n le 4 select I[n] else Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4): n in [1..40]]; // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    a[0]=4; a[1]=1; a[2]=3; a[3]=7; a[4]=15; a[n_]:= 2*a[n-1] -a[n-5]; Array[a, 34, 0]
    CoefficientList[Series[(4-3x-2x^2-x^3)/(1-x-x^2-x^3-x^4), {x, 0, 40}], x]
    LinearRecurrence[{1,1,1,1},{4,1,3,7},40] (* Harvey P. Dale, Jun 01 2015 *)
  • PARI
    Vec((4-3*x-2*x^2-x^3)/(1-x-x^2-x^3-x^4) + O(x^40)) \\ Michel Marcus, Jan 29 2016
    
  • Sage
    ((4-3*x-2*x^2-x^3)/(1-x-x^2-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 19 2019
    

Formula

G.f.: (4 - 3*x - 2*x^2 - x^3)/(1 - x - x^2 - x^3 - x^4).
a(n) = 2*a(n-1) - a(n-5), with a(0)=4, a(1)=1, a(2)=3, a(3)=7, a(4)=15. - Vincenzo Librandi, Dec 20 2010
a(n) = A000078(n+2) + 2*A000078(n+1) + 3*A000078(n) + 4*A000078(n-1). - Advika Srivastava, Aug 22 2019
a(n) = 8*a(n-3) - a(n-5) - 2*a(n-6) - 4*a(n-7). - Advika Srivastava, Aug 25 2019
a(n) = Trace(M^n), where M is the 4 X 4 matrix [0, 0, 0, 1; 1, 0, 0, 1; 0, 1, 0, 1; 0, 0, 1, 1], the companion matrix to the monic polynomial x^4 - x^3 - x^2 - x - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Dec 31 2022
a(n) = Sum_{r root of x^4-x^3-x^2-x-1} r^n. - Fabian Pereyra, Feb 28 2025

Extensions

Typo in definition corrected by Vincenzo Librandi, Dec 20 2010