cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A001648 Tetranacci numbers A073817 without the leading term 4.

Original entry on oeis.org

1, 3, 7, 15, 26, 51, 99, 191, 367, 708, 1365, 2631, 5071, 9775, 18842, 36319, 70007, 134943, 260111, 501380, 966441, 1862875, 3590807, 6921503, 13341626, 25716811, 49570747, 95550687, 184179871, 355018116, 684319421, 1319068095, 2542585503, 4900991135
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,3,7,15]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Maple
    A001648:=-(1+2*z+3*z**2+4*z**3)/(-1+z+z**2+z**3+z**4); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Rest@ CoefficientList[ Series[(4 - 3 x - 2 x^2 - x^3)/(1 - x - x^2 - x^3 - x^4), {x, 0, 40}], x] (* Or *)
    a[0] = 4; a[1] = 1; a[2] = 3; a[3] = 7; a[4] = 15; a[n_] := 2*a[n - 1] - a[n - 5]; Array[a, 33] (* Robert G. Wilson v *)
    LinearRecurrence[{1, 1, 1, 1}, {1, 3, 7, 15}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
  • Maxima
    a(n):=n*sum(sum((-1)^i*binomial(k,k-i)*binomial(n-i*4-1,k-1),i,0,((n-k)/4))/k,k,ceiling(n/5),n); /* Vladimir Kruchinin, Jan 20 2012 */
    
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x+3*x^2+4*x^3)/(1-x-x^2-x^3-x^4)+x*O(x^n),n))
    

Formula

G.f.: x*(1+2*x+3*x^2+4*x^3)/(1-x-x^2-x^3-x^4).
a(n) = trace of M^n, where M = the 4 X 4 matrix [ 0 1 0 0 / 0 0 1 0 / 0 0 0 1 / 1 1 1 1]. E.g., the trace (sum of diagonal terms) of M^12 = a(12) = 2631 = (108 + 316 + 717 + 1490). - Gary W. Adamson, Feb 22 2004
a(n) = n*Sum_{k=ceiling(n/5)..n} Sum_{i=0..(n-k)/4} (-1)^i*binomial(k,k-i)*binomial(n-i*4-1,k-1)/k, n>0. - Vladimir Kruchinin, Jan 20 2012

A074058 Reflected tetranacci numbers A073817.

Original entry on oeis.org

4, -1, -1, -1, 7, -6, -1, -1, 15, -19, 4, -1, 31, -53, 27, -6, 63, -137, 107, -39, 132, -337, 351, -185, 303, -806, 1039, -721, 791, -1915, 2884, -2481, 2303, -4621, 7683, -7846, 7087, -11545, 19987, -23375, 22020, -30177, 51519, -66737, 67415, -82374, 133215, -184993, 201567, -232163, 348804
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 16 2002

Keywords

Comments

Also a(n) is the trace of A^(-n), where A is the 4 X 4 matrix ((1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)).

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, "Concrete Mathematics", Addison-Wesley, Reading, MA, 1998.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(4+3*x+2*x^2+x^3)/(1+x+x^2+x^3-x^4), {x, 0, 1}], x]
  • PARI
    polsym(polrecip(1+x+x^2+x^3-x^4), 55) \\ Joerg Arndt, Jan 21 2023

Formula

a(n) = -a(n-1)-a(n-2)-a(n-3)+a(n-4), a(0)=4, a(1)=-1, a(2)=-1, a(3)=-1.
G.f.: (4+3x+2x^2+x^3)/(1+x+x^2+x^3-x^4).
From Peter Bala, Jan 19 2023: (Start)
a(n) = (-1)^n*A073937(n).
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. (End)

A106295 Period of the Lucas 4-step sequence A073817 mod n.

Original entry on oeis.org

1, 5, 26, 10, 312, 130, 342, 20, 78, 1560, 120, 130, 84, 1710, 312, 40, 4912, 390, 6858, 1560, 4446, 120, 12166, 260, 1560, 420, 234, 1710, 280, 1560, 61568, 80, 1560, 24560, 17784, 390, 1368, 34290, 1092, 1560, 240, 22230, 162800, 120, 312, 60830, 103822
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This sequence is the same as the period of Fibonacci 4-step sequence (A000078) mod n for n<563 because the discriminant of the characteristic polynomial x^4-x^3-x^2-x-1 is -563. The two sequences differ only at n that are multiples of 563.

Crossrefs

Cf. A000078, A073817, A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1).

Programs

  • Mathematica
    n=4; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]
  • Python
    from itertools import count
    def A106295(n):
        a = b = (4%n,1%n,3%n,7%n)
        s = sum(b) % n
        for m in count(1):
            b, s = b[1:] + (s,), (s+s-b[0]) % n
            if a == b:
                return m # Chai Wah Wu, Feb 22-27 2022

Formula

Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
a(2^k) = 5*2^(k-1) for k > 0. If a(p) != a(p^2) for p prime, then a(p^k) = p^(k-1)*a(p) for k > 0 [Waddill, 1992]. - Chai Wah Wu, Feb 25 2022

A075116 Binomial transform of A073817: a(n)=Sum(Binomial(n,k)*A073817(k),(k=0,..,n)).

Original entry on oeis.org

4, 5, 9, 23, 69, 210, 627, 1846, 5405, 15809, 46254, 135382, 396327, 1160294, 3396892, 9944688, 29113741, 85232259, 249522603, 730492701, 2138562494, 6260774221, 18328804756, 53658712275, 157089206159, 459888386910
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 02 2002

Keywords

Crossrefs

Cf. A073817.

Programs

  • Mathematica
    CoefficientList[Series[(4-15*z+16*z^2-6*z^3)/(1-5*z+8*z^2-6*z^3+z^4), {z, 0, 30}], z]
    LinearRecurrence[{5,-8,6,-1},{4,5,9,23},30] (* Harvey P. Dale, Jun 24 2017 *)

Formula

a(n)=5a(n-1)-8a(n-2)+6a(n-3)-a(n-4), a(0)=4, a(1)=5, a(2)=9, a(3)=23. G.f.: (4-15*z+16*z^2-6*z^3)/(1-5*z+8*z^2-6*z^3+z^4).

A104577 Indices of prime generalized tetranacci numbers, A073817.

Original entry on oeis.org

2, 3, 8, 9, 16, 19, 24, 27, 46, 68, 71, 78, 107, 198, 309, 377, 477, 1057, 1631, 2419, 3974, 4293, 8247, 10513, 10709, 12011, 15042, 30543, 31607, 39664, 47552, 145858
Offset: 1

Views

Author

T. D. Noe, Mar 16 2005

Keywords

Comments

The sequence of generalized tetranacci numbers is defined as beginning with 1, 3, 7, 15. Subsequent terms are the sum of the previous four terms. Note that the sequence of these generalized tetranacci numbers has many more primes than the tetranacci sequence A000078 (whose prime indices are in A104534).

Crossrefs

Cf. A104576 (indices of prime generalized tribonacci numbers).

Programs

  • Mathematica
    a={-1, -1, -1, 4}; Do[s=Plus@@a; a=RotateLeft[a]; a[[4]]=s; If[PrimeQ[s], Print[n]], {n, 30000}]

A106296 Period of the Lucas 4-step sequence A073817 mod prime(n).

Original entry on oeis.org

5, 26, 312, 342, 120, 84, 4912, 6858, 12166, 280, 61568, 1368, 240, 162800, 103822, 303480, 205378, 226980, 100254, 357910, 2664, 998720, 1157520, 9320, 368872, 1030300, 10608, 1225042, 2614040, 13874, 2048382, 4530768, 136, 772880, 3307948
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This sequence is the same as the period of Fibonacci 4-step sequence (A000078) mod prime(n) except for n=103, which corresponds to the prime 563 because the discriminant of the characteristic polynomial x^4-x^3-x^2-x-1 is -563. We have a(n) < prime(n) for primes 563 and A106280.

Crossrefs

Cf. A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1), A106280 (primes p such that x^4-x^3-x^2-x-1 mod p has 4 distinct zeros), A106295.

Programs

  • Mathematica
    n=4; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]

Formula

a(n) = A106295(prime(n)).

A075128 Binomial transform of generalized tetranacci numbers A073817: a(n)=Sum((-1)^k Binomial(n,k)*A073817(k),(k=0,..,n)).

Original entry on oeis.org

4, 3, 5, 3, 5, 8, 23, 52, 109, 201, 350, 586, 983, 1680, 2952, 5288, 9549, 17207, 30803, 54761, 96910, 171223, 302736, 536225, 951487, 1690208, 3003408, 5335509, 9473756, 16814058, 29833868, 52932503, 93922925, 166678207, 295825369
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 03 2002

Keywords

Crossrefs

Cf. A073817.

Programs

  • Mathematica
    CoefficientList[Series[(4-9*z+4*z^2+2*z^3)/(1-3*z+2*z^2+2*z^3-3*z^4), {z, 0, 40}], z]
    LinearRecurrence[{3,-2,-2,3},{4,3,5,3},40] (* Harvey P. Dale, Jul 13 2023 *)

Formula

a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4), a(0)=4, a(1)=3, a(2)=5, a(3)=3. G.f.: (4 - 9*z + 4*z^2 + 2*z^3)/(1 - 3*z + 2*z^2 + 2*z^3 - 3*z^4).

A106300 Primes that do not divide any term of the Lucas 4-step sequence A073817.

Original entry on oeis.org

2789, 3847, 4451, 4751, 5431, 6203, 8317, 9533, 9629, 9907, 10093, 11839, 13903, 13907, 14207, 15823, 16319, 16759, 19543, 20939, 21379, 21859, 25303, 26683, 29483, 30871, 31267, 31699, 32003, 32771, 33967, 34963, 36229, 37061, 39983
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

If a prime p divides a term a(k) of this sequence, then k must be less than the period of the sequence mod p. Hence these primes are found by computing A073817(k) mod p for increasing k and stopping when either A073817(k) mod p = 0 or the end of the period is reached. Interestingly, for all of these primes, the period of the sequence A073817(k) mod p appears to be (p-1)/d, where d is a small integer.

Crossrefs

Cf. A053028 (primes not dividing any Lucas number), A106299 (primes not dividing any Lucas 3-step number), A106301 (primes not dividing any Lucas 5-step number).

Programs

  • Mathematica
    n=4; lst={}; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; While[s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; !(a==a0 || s==0)]; If[s>0, AppendTo[lst, p]], {i, 10000}]; lst

A106791 Sum of two consecutive squares of Lucas 4-step numbers (A073817).

Original entry on oeis.org

17, 10, 58, 274, 901, 3277, 12402, 46282, 171170, 635953, 2364489, 8785386, 32637202, 121265666, 450571589, 1674090725, 6220049810, 23110593298, 85867345570, 319039636721, 1185390110881, 4404311472106, 16364198176874
Offset: 0

Views

Author

Jonathan Vos Post, May 16 2005

Keywords

Comments

A106729 is sum of two consecutive squares of Lucas numbers (A001254), for which L(n)^2 + L(n+1)^2 = 5*{F(n)^2 + F(n+1)^2} = 5*A001519(n). A106789 is sum of two consecutive squares of Lucas 3-step numbers (A001644). Sum of two consecutive squares of Lucas 4-step numbers can be expressed in terms of tetranacci numbers, but not quite as neatly.

Examples

			a(0) = A073817(0)^2 + A073817(1)^2 = 4^2 + 1^2 = 16 + 1 = 17.
a(1) = A073817(1)^2 + A073817(2)^2 = 1^2 + 3^2 = 1 + 9 = 10.
a(2) = A073817(2)^2 + A073817(3)^2 = 3^2 + 7^2 = 9 + 49 = 58.
a(3) = A073817(3)^2 + A073817(4)^2 = 7^2 + 15^2 = 49 + 225 = 274.
a(4) = A073817(4)^2 + A073817(5)^2 = 15^2 + 26^2 = 225 + 676 = 901 = 30^2 + 1.
a(5) = A073817(5)^2 + A073817(6)^2 = 26^2 + 51^2 = 676 + 2601 = 3277.
		

Crossrefs

Programs

  • GAP
    a:=[17,10,58,274,901,3277,12402, 46282,171170,635953];; for n in [11..40] do a[n]:=2*a[n-1]+4*a[n-2]+6*a[n-3]+12*a[n-4]-4*a[n-5] -6*a[n-6]-2*a[n-8]+a[n-10]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+17*x^9)/(1-2*x-4*x^2 -6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{2,4,6,12,-4,-6,0,-2,0,1}, {17,10,58,274,901,3277,12402, 46282,171170,635953}, 40] (* G. C. Greubel, Apr 23 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+17*x^9)/(1-2*x-4*x^2-6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+ 17*x^9)/(1-2*x-4*x^2-6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

a(n) = A073817(n)^2 + A073817(n+1)^2.
a(n) = 5*A073817(n)^2 + 4*A073817(n)*A073817(n-4) + A073817(n-4)^2.
G.f.: (17-24*x-30*x^2+16*x^3-143*x^4-21*x^5+46*x^6-32*x^7+2*x^8+17*x^9)/( (1- 3*x-3*x^2+x^3+x^4)*(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6)). - Colin Barker, Dec 17 2012

A075112 a(n)=Sum((-1)^(i+Floor(n/2))S(2i+e),(i=0,..,Floor(n/2))), where S(n) are generalized Tetranacci numbers (A073817) and e=(1/2)(1-(-1)^n).

Original entry on oeis.org

4, 1, -1, 6, 16, 20, 35, 79, 156, 288, 552, 1077, 2079, 3994, 7696, 14848, 28623, 55159, 106320, 204952, 395060, 761489, 1467815, 2829318, 5453688, 10512308, 20263123, 39058439, 75287564, 145121432, 279730552, 539197989, 1039337543, 2003387514, 3861653592, 7443576640, 14347955295
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 01 2002

Keywords

Comments

a(n) is the convolution of S(n) with the sequence (1,0,-1,0,1,0,-1,0,....) A056594.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(4 - 3*x - 2*x^2 - x^3)/(1 - x - 2*x^3 - 2*x^4 - x^5 - x^6), {x, 0, 40}], x]
    LinearRecurrence[{1,0,2,2,1,1},{4,1,-1,6,16,20},40] (* Harvey P. Dale, Mar 09 2013 *)

Formula

a(n)=a(n-1)+2a(n-3)+2a(n-4)+a(n-5)+a(n-6), a(0)=4, a(1)=1, a(2)=-1, a(3)=6, a(4)=16, a(5)=20. G.f.: (4 - 3*x - 2*x^2 - x^3)/(1 - x - 2*x^3 - 2*x^4 - x^5 - x^6).
Showing 1-10 of 41 results. Next