A074082
Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,1).
Original entry on oeis.org
0, 0, 0, 0, 2, 6, 16, 37, 81, 169, 342, 675, 1307, 2491, 4686, 8718, 16066, 29364, 53282, 96065, 172215, 307151, 545286, 963993, 1697701, 2979383, 5211852, 9090060, 15810530, 27429426, 47473828, 81983773, 141286221, 243011173
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=2, nu(3)=3+q, nu(4)=5+3q+2q^2, nu(5)=8+7q+6q^2+4q^3+q^4, so the coefficients of q^2 are 0,0,0,0,2,6.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
-
b=1; lambda=1; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0, 0}, LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 2, 6, 16, 37}, 32]] (* Jean-François Alcover, Sep 23 2017 *)
A074352
Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,2).
Original entry on oeis.org
0, 0, 0, 2, 8, 22, 60, 146, 352, 814, 1860, 4170, 9256, 20326, 44300, 95874, 206320, 441758, 941780, 2000058, 4233144, 8932310, 18796700, 39457522, 82643328, 172743182, 360399460, 750625066, 1560902472, 3241109574, 6720828460, 13918875490, 28792188176
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=3, nu(3)=5+2q, nu(4)=11+8q+6q^2, nu(5)=21+22q+20q^2+14q^3+4q^4, so the coefficients of q^1 are 0,0,0,2,8,22.
- Colin Barker, Table of n, a(n) for n = 0..1000
- M. Beattie, S. Dăscălescu, and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (2,3,-4,-4).
-
LinearRecurrence[{2, 3, -4, -4}, {0, 0, 0, 2, 8}, 50] (* Paolo Xausa, Jan 28 2025 *)
-
a(n)=if(n<1,0,(1/27)*(2^n*(6*n-11)+(-1)^n*(6*n-16)))
-
a(n)=if(n<1,0,(1/81)*(2^(n-1)*(6*n^2-43)+ (-1)^n*(6*n^2-24*n+62)))
-
concat(vector(3), Vec(2*x^3*(1 + 2*x) / ((1 + x)^2*(1 - 2*x)^2) + O(x^40))) \\ Colin Barker, Nov 18 2017
A074363
Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(3,1).
Original entry on oeis.org
0, 0, 0, 0, 0, 36, 246, 1293, 6057, 26592, 111934, 457353, 1827529, 7176636, 27789976, 106371588, 403204880, 1515647250, 5656172420, 20974163475, 77339044883, 283743384228, 1036296662574, 3769287797151, 13658724680991, 49325767966842, 177570110818794
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=3, nu(2)=10, nu(3)=33+3q, nu(4)=109+19q+10q^2, nu(5)=360+93q+66q^2+36q^3+3q^4, so the coefficients of q^1 are 0,0,0,0,0,36.
- Colin Barker, Table of n, a(n) for n = 0..1001
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (12,-50,72,21,-72,-50,-12,-1).
More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002
A074087
Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,3).
Original entry on oeis.org
0, 0, 0, 6, 33, 144, 570, 2118, 7587, 26448, 90420, 304470, 1013061, 3338112, 10911150, 35423862, 114342855, 367242336, 1174368360, 3741029094, 11876859369, 37591894320, 118659631650, 373630740966, 1173847761003
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=7, nu(3)=20+6q, nu(4)=61+33q+21q^2, nu(5)=182+144q+120q^2+78q^3+18q^4, so the coefficients of q^1 are 0,0,0,6,33,144.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (4,2,-12,-9).
-
I:=[0,0,6,33]; [0] cat [n le 4 select I[n] else 4*Self(n-1) + 2*Self(n-2) -12*Self(n-3) -9*Self(n-4): n in [1..30]]; // G. C. Greubel, May 26 2018
-
b=2; lambda=3; expon=1; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0}, LinearRecurrence[{4,2,-12,-9}, {0,0,6,33}, 50]] (* G. C. Greubel, May 26 2018 *)
-
x='x+O('x^30); concat([0,0,0], Vec((6*x^3 +9*x^4)/(1-2*x-3*x^2)^2)) \\ G. C. Greubel, May 26 2018
A074357
Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,3).
Original entry on oeis.org
0, 0, 0, 0, 0, 30, 168, 639, 2415, 7872, 25542, 77727, 233547, 679410, 1949862, 5490132, 15276456, 41963844, 114153990, 307595853, 822263313, 2181777252, 5751280350, 15069310365, 39269077809, 101817186264, 262776963360
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=4, nu(3)=7+3q, nu(4)=19+15q+12q^2, nu(5)=40+45q+42q^2+30q^3+9q^4, so the coefficients of q^3 are 0,0,0,0,0,30.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (4,6,-32,-19,96,54,-108,-81).
-
nu := proc(b,lambda,n) global q; local qp,i ; if n = 0 then RETURN(1) ; elif n =1 then RETURN(b) ; fi ; qp:=0 ; for i from 0 to n-2 do qp := qp + q^i ; od ; RETURN( b*nu(b,lambda,n-1)+lambda*qp*nu(b,lambda,n-2)) ; end: A074357 := proc(n) RETURN( coeftayl(nu(1,3,n),q=0,3) ) ; end: for n from 0 to 30 do printf("%d,", A074357(n)) ; od ; # R. J. Mathar, Sep 20 2006
-
Join[{0, 0, 0}, LinearRecurrence[{4, 6, -32, -19, 96, 54, -108, -81}, {0, 0, 30, 168, 639, 2415, 7872, 25542}, 24]] (* Jean-François Alcover, Sep 22 2017 *)
A074358
Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n-2))*nu(n-2) with (b,lambda)=(2,2).
Original entry on oeis.org
0, 0, 0, 4, 20, 80, 288, 976, 3184, 10112, 31488, 96576, 292672, 878336, 2614784, 7731456, 22728448, 66482176, 193617920, 561718272, 1624101888, 4681535488, 13457924096, 38592008192, 110419341312, 315287830528, 898583560192
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=6, nu(3) = 16 + 4q, nu(4) = 44 + 20q + 12q^2, nu(5) = 120 + 80q + 64q^2 + 40q^3 + 8q^4, so the coefficients of q^1 are 0,0,0,4,20,80.
-
nu := proc(b,lambda,n) global q; local qp,i ; if n = 0 then RETURN(1) ; elif n =1 then RETURN(b) ; fi ; qp:=0 ; for i from 0 to n-2 do qp := qp + q^i ; od ; RETURN( b*nu(b,lambda,n-1)+lambda*qp*nu(b,lambda,n-2)) ; end: A074358 := proc(n) RETURN( coeftayl(nu(2,2,n),q=0,1) ) ; end: for n from 0 to 30 do printf("%d,", A074358(n)) ; od ; # R. J. Mathar, Sep 20 2006
-
nu[0] = 1; nu[1] = 2; nu[n_] := nu[n] = 2*nu[n-1] + 2*Total[q^Range[0, n-2] ]*nu[n-2] // Expand;
a[n_] := Coefficient[nu[n], q, 1];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Nov 17 2017 *)
A074360
Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,2).
Original entry on oeis.org
0, 0, 0, 0, 0, 40, 232, 1072, 4400, 16864, 61728, 218496, 753792, 2547840, 8468608, 27755776, 89886976, 288101888, 915089920, 2883416064, 9021001728, 28042881024, 86672025600, 266472878080, 815347462144, 2483820617728
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=6, nu(3)=16+4q, nu(4)=44+20q+12q^2, nu(5)=120+80q+64q^2+40q^3+8q^4, so the coefficients of q^1 are 0,0,0,0,0,40.
-
nu := proc(b,lambda,n) global q; local qp,i ; if n = 0 then RETURN(1) ; elif n =1 then RETURN(b) ; fi ; qp:=0 ; for i from 0 to n-2 do qp := qp + q^i ; od ; RETURN( b*nu(b,lambda,n-1)+lambda*qp*nu(b,lambda,n-2)) ; end: A074360 := proc(n) RETURN( coeftayl(nu(2,2,n),q=0,3) ) ; end: for n from 0 to 30 do printf("%d,", A074360(n)) ; od ; # R. J. Mathar, Sep 20 2006
-
nu[0] = 1; nu[1] = 2; nu[n_] := nu[n] = 2*nu[n - 1] + 2*Total[q^Range[0, n - 2]]*nu[n - 2] // Expand;
a[n_] := Coefficient[nu[n], q, 3];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 18 2017 *)
A074084
Coefficient of q^1 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,1).
Original entry on oeis.org
0, 0, 0, 2, 9, 32, 102, 306, 883, 2480, 6828, 18514, 49597, 131568, 346194, 904738, 2350695, 6076960, 15641304, 40103778, 102473969, 261046144, 663180222, 1680628946, 4249496795, 10722962256, 27007159428, 67904097074
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=5, nu(3)=12+2q, nu(4)=29+9q+5q^2, nu(5)=70+32q+24q^2+14q^3+2q^4, so the coefficients of q^1 are 0,0,0,2,9,32.
-
b=2; lambda=1; expon=1; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0},LinearRecurrence[{4,-2,-4,-1},{0,0,2,9},30]] (* Harvey P. Dale, Apr 18 2012 *)
A074086
Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,1).
Original entry on oeis.org
0, 0, 0, 0, 0, 14, 71, 282, 997, 3298, 10439, 32012, 95834, 281494, 814131, 2324422, 6564135, 18362810, 50947395, 140329400, 384031508, 1044880222, 2828084399, 7618214354, 20432838121, 54585196818, 145287466799, 385397215108
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=5, nu(3)=12+2q, nu(4)=29+9q+5q^2, nu(5)=70+32q+24q^2+14q^3+2q^4, so the coefficients of q^3 are 0,0,0,0,0,14.
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (8, -20, 8, 26, -8, -20, -8, -1).
-
b=2; lambda=1; expon=3; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
(* Second program: *)
Join[{0, 0, 0}, LinearRecurrence[{8, -20, 8, 26, -8, -20, -8, -1}, {0, 0, 14, 71, 282, 997, 3298, 10439}, 25]] (* Jean-François Alcover, Jan 27 2019 *)
A074354
Coefficient of q^3 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,2).
Original entry on oeis.org
0, 0, 0, 0, 0, 14, 64, 218, 692, 1982, 5496, 14562, 37692, 95142, 236032, 576074, 1387780, 3304078, 7787656, 18190386, 42151116, 96972534, 221651472, 503650970, 1138286740, 2559944414, 5731095704, 12776843138, 28374100572
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=3, nu(3)=5+2q, nu(4)=11+8q+6q^2, nu(5)=21+22q+20q^2+14q^3+4q^4, so the coefficients of q^1 are 0,0,0,0,0,14.
Showing 1-10 of 19 results.
Comments