cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A085866 a(1) = 3, a(n+1) = a(n)*phi(a(n)), where phi(n) is Euler's totient function.

Original entry on oeis.org

3, 6, 12, 48, 768, 196608, 12884901888, 55340232221128654848, 1020847100762815390390123822295304634368, 347376267711948586270712955026063723559809953996921692118372752023739388919808
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Comments

a(1) = 1, a(n+1) = a(n) + phi(a(n)) gives A074693.
For n > 1, a(n)/3 is 2^(2^(n-2)). This sequence is 2, 4, 16, 256, ..., which is phi(a(n-1)).
The Harris 1935 problem is to show 1 + sqrt(13) = sqrt(12 + sqrt(48 + sqrt( 768 + ...))). - Michael Somos, Jun 18 2018

Examples

			a(3) = 12 and phi(12)= 4, hence a(4) = 12*4 = 48.
		

Crossrefs

Programs

  • Magma
    [3] cat [3*2^(2^(n-2)): n in [2..11]]; // Vincenzo Librandi, Jun 19 2018
  • Mathematica
    RecurrenceTable[{a[1]==3, a[n+1]==a[n] EulerPhi [a[n]]}, a, {n, 20}] (* Vincenzo Librandi, Jun 19 2018 *)
    NestList[# EulerPhi[#]&,3,10] (* Harvey P. Dale, Jun 23 2022 *)
  • PARI
    for(n=1,11,if(n==1,a=3,a*=eulerphi(a)); print1(a, ", "); )
    

Formula

a(n) = 3*2^(2^(n-2)).

Extensions

More terms from Ray Chandler, Jul 16 2003

A165931 a(1) = 1, for n > 1: a(n) = phi(sum of the previous terms) where phi is Euler's totient function.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 8, 22, 24, 44, 112, 120, 176, 520, 692, 1732, 1440, 2592, 4032, 6480, 11088, 18720, 23760, 43200, 69984, 123120, 174960, 321732, 408240, 641520, 1139184, 1959552, 2799360, 5073840, 8550684, 12830400, 20820240, 36684900, 60993000, 101803608, 127591200, 231575760
Offset: 1

Views

Author

Jaroslav Krizek, Sep 30 2009

Keywords

Comments

a(1) = 1, for n > 1: a(n) = phi(Sum_{i=1..n-1} a(i)) = where phi is A000010. a(n) is the inverse of partial sums of A074693(n), i.e., a(1) = A074693(1), and for n > 1, a(n) = A074693(n) - A074693(n - 1), i.e., the first differences of A074693.

Examples

			For n = 4, a(4) = phi(a(1) + a(2) + a(3)) = phi(1 + 1 + 1) = phi(3) = 2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n,
          numtheory[phi](b(n-1))+b(n-1))
        end:
    a:= n-> b(n)-b(n-1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 02 2020
  • Mathematica
    a[1] := 1; a[n_] := a[n] = EulerPhi[Plus @@ Table[a[m], {m, n - 1}]]; Table[a[n], {n, 30}]
  • PARI
    first(n) = {my(res = vector(n), t = 1); res[1] = 1; for(i = 2, n, c = eulerphi(t); res[i] = c; t+=c); res} \\ David A. Corneth, Oct 02 2020

Extensions

Terms verified by Alonso del Arte, Oct 12 2009
More terms from David A. Corneth, Oct 02 2020
Showing 1-2 of 2 results.