A074851 Numbers k such that k and k+1 both have exactly 2 distinct prime factors.
14, 20, 21, 33, 34, 35, 38, 39, 44, 45, 50, 51, 54, 55, 56, 57, 62, 68, 74, 75, 76, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 111, 115, 116, 117, 118, 122, 123, 133, 134, 135, 141, 142, 143, 144, 145, 146, 147, 152, 158, 159, 160, 161, 171, 175, 176, 177, 183, 184
Offset: 1
Examples
20=2^2*5 21=3*7 hence 20 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
GAP
Filtered([1..200],n->[Size(Set(Factors(n))),Size(Set(Factors(n+1)))]=[2,2]); # Muniru A Asiru, Dec 05 2018
-
Magma
[n: n in [2..200] | #PrimeDivisors(n) eq 2 and #PrimeDivisors(n+1) eq 2]; // Vincenzo Librandi, Dec 05 2018
-
Mathematica
Flatten[Position[Partition[Table[If[PrimeNu[n]==2,1,0],{n,200}],2,1],{1,1}]] (* Harvey P. Dale, Mar 12 2015 *)
-
PARI
isok(n) = (omega(n) == 2) && (omega(n+1) == 2); \\ Michel Marcus, May 06 2016
-
Python
import sympy from sympy.ntheory.factor_ import primenu for n in range(1,200): if primenu(n)==2 and primenu(n+1)==2: print(n, end=', '); # Stefano Spezia, Dec 05 2018
Formula
a(n) seems to be asymptotic to c*n*log(n)^2 with c=0.13...
Comments