cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A088232 Numbers k such that 3 does not divide phi(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 15, 16, 17, 20, 22, 23, 24, 25, 29, 30, 32, 33, 34, 40, 41, 44, 46, 47, 48, 50, 51, 53, 55, 58, 59, 60, 64, 66, 68, 69, 71, 75, 80, 82, 83, 85, 87, 88, 89, 92, 94, 96, 100, 101, 102, 106, 107, 110, 113, 115, 116, 118, 120, 121, 123, 125, 128
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 03 2003

Keywords

Comments

n such that the congruence x^3 == 1 mod(n) has only the trivial solution x=1 i.e. A060839(n) = 1 . Complement of sequence A066498.
Let U(n) be the group of positive integers coprime to n under mod n multiplication. Let U(n)^3 = {x^3: x is an element of U(n)}. These are the n such that U(n) = U(n)^3. - Geoffrey Critzer, Jun 07 2015
In other words, numbers divisible neither by 9 nor by any primes of the form 6k+1. - Ivan Neretin, Sep 03 2015
The asymptotic density of this sequence is 0 (Dressler, 1975). - Amiram Eldar, Jul 23 2020

Crossrefs

Cf. A000010, A066498 (complement).
Positions of 1's in A060839, of 0's in A354099, of nonzeros in A074942.
Cf. also A329963.

Programs

  • Maple
    select(t -> numtheory:-phi(t) mod 3 <> 0, [$1..1000]); # Robert Israel, Sep 04 2015
  • Mathematica
    Prepend[Position[Table[Union[Select[Range[n], CoprimeQ[#, n] &]] ==
         Union[Mod[Select[Range[n], CoprimeQ[#, n] &]^3, n]], {n, 1,155}], True], 1] // Flatten (* Geoffrey Critzer, Jun 07 2015 *)
    Select[Range[140],!Divisible[EulerPhi[#],3]&] (* Harvey P. Dale, Sep 23 2017 *)
  • PARI
    is(n)=eulerphi(n)%3 \\ Charles R Greathouse IV, Feb 04 2013

Formula

a(n) ~ k n sqrt(log(n)) for some constant k. k appears to be around 1.08. [Charles R Greathouse IV, Feb 14 2012]

Extensions

More terms from Ray Chandler, Nov 05 2003

A084300 a(n) = phi(n) mod 6.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 0, 4, 0, 4, 4, 4, 0, 0, 2, 2, 4, 0, 0, 2, 0, 4, 4, 2, 2, 0, 0, 0, 4, 2, 0, 4, 2, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 2, 0, 4, 4, 4, 0, 2, 2, 0, 4, 0, 4, 0, 0, 4, 4, 4, 0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 4, 4, 0, 4, 0, 2, 4, 4, 0, 0, 2, 0, 4, 0, 2, 0, 0, 0, 4, 4, 2, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jun 02 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000010(n) mod 6.
a(n) = A010875(A000010(n)). - Amiram Eldar, Aug 17 2024

A353768 a(n) = phi(n) mod 4; Euler totient function reduced modulo 4.

Original entry on oeis.org

1, 1, 2, 2, 0, 2, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2
Offset: 1

Views

Author

Antti Karttunen, May 15 2022

Keywords

Crossrefs

Cf. A000010, A010873, A066499 (positions of 2's), A172019 (of 0's).
Cf. also A074942, A261872, A084300, and also A105824.

Programs

  • PARI
    A353768(n) = (eulerphi(n)%4);

Formula

a(n) = A010873(A000010(n)).

A354099 The 3-adic valuation of Euler totient function phi.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 1, 2, 2, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 2, 0, 0, 0, 1, 1, 2, 0, 1, 0, 1, 0, 0, 1, 0, 1, 2, 2, 0, 2, 1, 1, 1, 0, 3, 0, 0, 1, 0, 1, 0, 0, 0, 1, 2, 0, 1, 0, 2, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Cf. A088232 (positions of zeros), A066498 (of terms > 0).
Cf. also A354100.

Programs

  • Mathematica
    a[n_] := IntegerExponent[EulerPhi[n], 3]; Array[a, 100] (* Amiram Eldar, May 17 2022 *)
  • PARI
    A354099(n) = valuation(eulerphi(n),3);
    
  • PARI
    A354099(n) = { my(f=factor(n)); sum(k=1,#f~,valuation((f[k,1]-1)*(f[k,1]^(f[k,2]-1)), 3)); }; \\ Demonstrates the additivity.

Formula

a(n) = A007949(A000010(n)).
Additive with a(p^e) = A007949((p-1)*p^(e-1)).

A261872 a(n) = phi(n) mod 5, where phi is the Euler totient function.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 1, 4, 1, 4, 0, 4, 2, 1, 3, 3, 1, 1, 3, 3, 2, 0, 2, 3, 0, 2, 3, 2, 3, 3, 0, 1, 0, 1, 4, 2, 1, 3, 4, 1, 0, 2, 2, 0, 4, 2, 1, 1, 2, 0, 2, 4, 2, 3, 0, 4, 1, 3, 3, 1, 0, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 4, 2, 1, 0, 1, 0, 4, 3, 2, 4, 0, 2, 4, 4, 2, 1, 0, 3, 4, 2, 4, 0, 1, 2, 2, 1, 2, 0, 0, 0, 2, 2, 3, 3
Offset: 1

Views

Author

Vincenzo Librandi, Sep 04 2015

Keywords

Crossrefs

Programs

  • Magma
    [EulerPhi(n) mod 5: n in [1..110]];
    
  • Mathematica
    Table[Mod[EulerPhi[n], 5], {n, 110}]
  • PARI
    a(n) = eulerphi(n) % 5; \\ Michel Marcus, Sep 05 2015

Formula

a(n) = A000010(n) mod 5 = A010874(A000010(n)).

Extensions

More terms from Antti Karttunen, Dec 04 2017

A354094 a(n) = phi(A354091(n)), where A354091 is fully multiplicative prime shift which replaces the primes of the form 3k+2 by the next larger such prime, while other primes stay as they are, and phi is Euler totient function.

Original entry on oeis.org

1, 4, 2, 20, 10, 8, 6, 100, 6, 40, 16, 40, 12, 24, 20, 500, 22, 24, 18, 200, 12, 64, 28, 200, 110, 48, 18, 120, 40, 80, 30, 2500, 32, 88, 60, 120, 36, 72, 24, 1000, 46, 48, 42, 320, 60, 112, 52, 1000, 42, 440, 44, 240, 58, 72, 160, 600, 36, 160, 70, 400, 60, 120, 36, 12500, 120, 128, 66, 440, 56, 240, 82, 600, 72
Offset: 1

Views

Author

Antti Karttunen, May 17 2022

Keywords

Crossrefs

Möbius transform of A354091.
Cf. also A003972.

Programs

  • PARI
    A354094(n) = { my(f=factor(n)); for(k=1,#f~, if(2==(f[k,1]%3), for(i=1+primepi(f[k,1]),oo,if(2==(prime(i)%3), f[k,1]=prime(i); break)))); eulerphi(factorback(f)); };

Formula

Multiplicative with a(p^e) = (q-1) * q^(e-1) where q = A003627(1+n) if p = A003627(n), otherwise q = p.
a(n) = A000010(A354091(n)).
a(n) = Sum_{d|n} A008683(n/d) * A354091(d).
For all n >= 1, A010872(a(n)) = A010872(A000010(n)) = A074942(n).
For all n >= 1, A007949(a(n)) = A007949(A000010(n)) = A354099(n).
Showing 1-6 of 6 results.