cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A076550 Indices of triangular numbers listed in A075088.

Original entry on oeis.org

1, 2, 3, 7, 8, 15, 32, 64, 63, 224, 255, 1280, 512, 3968, 6399, 10240, 4095, 14336, 32768, 65535, 229375, 180224, 483327, 262143, 2097151, 1048575, 14680064, 17432576, 33554432, 67108864, 16777215
Offset: 0

Views

Author

Shyam Sunder Gupta, Oct 19 2002

Keywords

Comments

a(32) = 134217728. - Robert G. Wilson v, Jun 28 2010

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger@n; t = Table[0, {100}]; k = 1; While[k < 10^9/4, a = f[k] + f[k + 1] -1; If[ t[[a + 1]] == 0, t[[a + 1]] = k; Print[{a, k}]]; k++ ]; t (* Robert G. Wilson v, Jun 28 2010 *)

Formula

A000217(a(n)) = A075088(n).

Extensions

Edited by Ray Chandler, Dec 17 2004
a(26)-a(30) from Ray Chandler, Dec 22 2004

A358863 a(n) is the smallest n-gonal number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

4, 28, 16, 176, 4950, 8910, 1408, 346500, 277992, 7542080, 326656, 544320, 120400000, 145213440, 48549888, 4733575168, 536813568, 2149576704, 3057500160, 938539560960, 1358951178240, 36324805836800, 99956555776, 49212503949312, 118747221196800, 59461613912064, 13749193801728
Offset: 2

Views

Author

Ilya Gutkovskiy, Dec 03 2022

Keywords

Comments

The corresponding indices of n-gonal numbers are 7, 4, 11, 50, 60, 22, 315, 264, 1295, 256, 315, 4480, 4727, 2634, 25123, 8192, 15903, 18432, 314315, 368640, ...
a(n) is the first n-gonal number k such that A001222(k)= n. - Robert Israel, Jan 15 2023

Examples

			a(3) = 28, because 28 is a triangular number with 3 prime factors (counted with multiplicity) {2, 2, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • Maple
    g:= proc(s) local n, p, F;
      for n from 1 to 10^7 do
        p:= (s-2)*n*(n-1)/2 + n;
        if numtheory:-bigomega(p) = s then return p fi;
      od
    end proc:
    map(g, [$2..30]); # Robert Israel, Jan 15 2023
  • Mathematica
    sng[n_]:=Module[{k=1},While[PrimeOmega[PolygonalNumber[n,k]]!=n,k++];PolygonalNumber[ n,k]]; Array[sng,21,2] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Feb 19 2023 *)
  • PARI
    a(n) = if(n<3, return()); for(k=1, oo, my(t=(k*(n*k - n - 2*k + 4))\2); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 04 2022
    
  • PARI
    bigomega_polygonals(A, B, n, k) = A=max(A, 2^n); (f(m, p, n) = my(list=List()); if(n==1, forprime(q=max(p,ceil(A/m)), B\m, my(t=m*q); if(ispolygonal(t,k), listput(list, t))), forprime(q = p, sqrtnint(B\m, n), my(t=m*q); if(ceil(A/t) <= B\t, list=concat(list, f(t, q, n-1))))); list); vecsort(Vec(f(1, 2, n)));
    a(n, k=n) = if(k < 3, return()); my(x=2^n, y=2*x); while(1, my(v=bigomega_polygonals(x, y, n, k)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Dec 04 2022

Formula

A001222(a(n)) = n. - Robert Israel, Jan 15 2023

Extensions

a(23)-a(28) from Daniel Suteu, Dec 04 2022
a(2)=4 prepended by Robert Israel, Jan 15 2023

A127637 Smallest squarefree triangular number with exactly n prime factors.

Original entry on oeis.org

1, 3, 6, 66, 210, 3570, 207690, 930930, 56812470, 1803571770, 32395433070, 265257422430, 91348974206490, 24630635909489610, 438603767516904990, 14193386885746698630, 2378522762792139793830, 351206814022419685159830, 28791787439593010836313310
Offset: 0

Views

Author

Rick L. Shepherd, Jan 28 2007, Feb 03 2007

Keywords

Comments

The sequence of smallest squarefree triangular numbers with at least n prime factors has identical terms through 91348974206490 at least.
a(19) <= 8285055066500101241048306610. a(20) <= 120052594044654305809137933570. - Donovan Johnson, Feb 28 2012

Examples

			a(12) = 91348974206490 = 2*3*5*7*11*13*17*19*29*37*67*131 = A000217(13516580).
		

Crossrefs

Programs

  • PARI
    squarefree_omega_polygonals(A, B, n, k) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); my(s=sqrtnint(B\m, j)); if(j==1, forprime(q=max(p, ceil(A/m)), s, if(ispolygonal(m*q, k), listput(list, m*q))), forprime(q=p, s, my(t=m*q); list=concat(list, f(t, q+1, j-1)))); list); vecsort(Vec(f(1, 2, n)));
    a(n, k=3) = if(n==0, return(1)); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=squarefree_omega_polygonals(x, y, n, k)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Jan 18 2023

Extensions

a(13)-a(16) from Donovan Johnson, Jan 28 2009
a(17) from Donovan Johnson, Feb 07 2009
a(18) from Donovan Johnson, Feb 28 2012

A358927 a(n) is the smallest tetrahedral number with exactly n prime factors (counted with multiplicity), or -1 if no such number exists.

Original entry on oeis.org

1, -1, 4, 20, 56, 120, 560, 4960, 19600, 41664, 341376, 695520, 7207200, 22238720, 178433024, 1429559296, 179481600, 11453245440, 11444858880, 393079864320, 3928874471424, 5864598896640, 46910348656640, 975649558118400, 3002365391929344, 7805131503206400
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Examples

			a(4) = 56, because 56 is a tetrahedral number with 4 prime factors (counted with multiplicity) {2, 2, 2, 7} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    t[k_] := k*(k + 1)*(k + 2)/6; a[n_] := Module[{k = 1, tk}, While[PrimeOmega[tk = t[k]] != n, k++]; tk]; a[1] = -1; Array[a, 26, 0] (* Amiram Eldar, Dec 09 2022 *)

A358929 a(n) is the smallest centered triangular number with exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

1, 19, 4, 316, 136, 760, 64, 4960, 22144, 103360, 27136, 5492224, 1186816, 41414656, 271212544, 559980544, 1334788096, 12943360, 7032930304, 527049293824, 158186536960, 1096295120896, 7871801589760, 154690378792960, 13071965224960, 56262393856, 964655941943296
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 06 2022

Keywords

Examples

			a(4) = 136, because 136 is a centered triangular number with 4 prime factors (counted with multiplicity) {2, 2, 2, 17} and this is the smallest such number.
		

Crossrefs

Programs

  • Mathematica
    c[k_] := (3*k^2 + 3*k + 2)/2; a[n_] := Module[{k = 0, ck}, While[PrimeOmega[ck = c[k]] != n, k++]; ck]; Array[a, 18, 0] (* Amiram Eldar, Dec 09 2022 *)
  • PARI
    a(n) = if(n==0, return(1)); for(k=1, oo, my(t=3*k*(k+1)/2 + 1); if(bigomega(t) == n, return(t))); \\ Daniel Suteu, Dec 10 2022

Extensions

a(22)-a(26) from Daniel Suteu, Dec 10 2022

A101744 Triangular numbers which are 10-almost primes.

Original entry on oeis.org

32640, 73920, 130816, 165600, 204480, 265356, 294528, 401856, 592416, 839160, 947376, 990528, 1279200, 1445850, 1492128, 1606528, 1842240, 1844160, 2031120, 2049300, 2821500, 2956096, 3571128, 3963520, 4148640, 4250070, 4335040
Offset: 1

Views

Author

Jonathan Vos Post, Dec 14 2004

Keywords

Comments

A101745 contains the indices of this sequence, i.e. T(n) for what values of n are these 10-almost primes.

Examples

			a(1) = 32640 because that is the smallest triangular number which is also a 10-almost prime; specifically T(255) = 255*(255+1)/2 = 32640 = 2^7 * 3 * 5 * 17.
		

References

  • Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 59, 1987.
  • Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 33-38, 1996.
  • Dudeney, H. E. Amusements in Mathematics. New York: Dover, pp. 67 and 167, 1970.

Crossrefs

Programs

  • Mathematica
    BigOmega[n_Integer]:=Plus@@Last[Transpose[FactorInteger[n]]]; Select[Table[n*(n+1)/2, {n, 2, 5000}], BigOmega[ # ]==10&] (* Ray Chandler, Dec 14 2004 *)
  • PARI
    list(lim)=my(v=List(),cur,last=3,n=256,t); while((t=n*(n-1)/2) <= lim, cur=bigomega(n); if(cur+old==11, listput(v,t)); old=cur; n++); Vec(v) \\ Charles R Greathouse IV, Feb 05 2017

Formula

a(n) is in the intersection of {A000217} and {A046314}. Integers of the form k*(k+1)/2 which have exactly 10 prime factors.

Extensions

More terms from Ray Chandler, Dec 14 2004

A209049 Smallest pentagonal number with n prime factors (counted with multiplicity).

Original entry on oeis.org

1, 5, 22, 12, 210, 176, 1520, 1080, 8400, 55200, 273280, 43776, 2624832, 7173360, 71660160, 100659200, 34255872, 178962432, 3623854080, 17895751680, 5413478400, 43690752000, 927712542720, 733008101376, 1789570252800, 35917382287360, 50649120571392
Offset: 0

Views

Author

Robert G. Wilson v, Mar 04 2012

Keywords

Comments

Pentagonal analogy of A075088.

Crossrefs

Programs

  • Mathematica
    k = 1; t = Table[0, {50}]; While[k < 500000001, a = PrimeOmega[k] + PrimeOmega[3 k - 1] - 1; If[ t[[a + 1]] == 0, t[[a + 1]] = k; Print[{k, a}]]; k++]; # (3 # - 1)/2 & /@ t
    Join[{1},Table[SelectFirst[{#,PrimeOmega[#]}&/@PolygonalNumber[5,Range[ 110000]],#[[2]]==n&],{n,20}][[All,1]]] (* The program generates the first 21 terms of the sequence. *) (* Harvey P. Dale, Dec 27 2022 *)

A375657 The smallest triangular number that begins a run of at least n consecutive triangular numbers with the same number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 6, 6, 6, 724206, 32365035, 32365035, 9127288495, 497232340606, 54524401634046, 192541553136345, 3119282531272578, 1584264619108935753, 34399764958387086910, 34399764958387086910
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 23 2024

Keywords

Examples

			a(4) = 6 because 6 is the smallest triangular number that begins a run of 4 consecutive triangular numbers (6, 10, 15, 21) with the same number of prime factors (counted with multiplicity), i.e. 2.
a(5) = 724206 because 724206 is the smallest triangular number that begins a run of 5 consecutive triangular numbers (724206, 725410, 726615, 727821, 729028) with the same number of prime factors (counted with multiplicity), i.e. 5.
		

Crossrefs

A363847 Numbers k such that Omega(m*(m+1)) < Omega(k*(k+1)) for all m < k, where Omega(k) is the number of prime divisors of k counted with multiplicity (A001222).

Original entry on oeis.org

1, 2, 3, 7, 8, 15, 32, 63, 224, 255, 512, 3968, 4095, 14336, 32768, 65535, 180224, 262143, 1048575, 14680064, 16777215, 134217728, 268435455, 1073741823, 8589934592, 12884901887, 34359738368, 68719476735, 1099511627775, 4398046511103, 17592186044415, 35184372088832
Offset: 1

Views

Author

Amiram Eldar, Jun 24 2023

Keywords

Comments

Terms a(2)-a(18) were found by Erdős and Nicolas (1978-1979).
Equivalently, numbers k such that Omega(m) + Omega(m+1) < Omega(k) + Omega(k+1), for all m < k.
The corresponding record values are 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 17, 18, 19, 20, 22, 24, 26, 27, 31, 33, 34, 37, 38, 39, 40, 46, 48, 50, 51, 52, ... .

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{o1 = 0, o2, om = 0, s = {}}, Do[o2 = PrimeOmega[k]; o = o1 + o2; If[o > om, om = o; AppendTo[s, k - 1]]; o1 = o2, {k, 2, kmax}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(o1 = 0, o2, om = 0); for(k = 2, kmax, o2 = bigomega(k); o = o1 + o2; if(o > om, om = o; print1(k-1, ", ")); o1 = o2); }

Extensions

a(29)-a(32) from Martin Ehrenstein, Jul 08 2023
Showing 1-9 of 9 results.