A114047
x such that x^2 - 13*y^2 = 1.
Original entry on oeis.org
1, 649, 842401, 1093435849, 1419278889601, 1842222905266249, 2391203911756701601, 3103780835237293411849, 4028705132934095091878401, 5229256158767620191964752649, 6787570465375238075075157060001, 8810261234800900253827361899128649
Offset: 0
-
I:=[1,649]; [n le 2 select I[n] else 1298*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jun 14 2015
-
LinearRecurrence[{1298,-1},{1,649},20] (* or *) With[{c=180Sqrt[13]}, Simplify[Table[1/2((649-c)^n+(649+c)^n),{n,0,20}]]] (* Harvey P. Dale, Aug 11 2011 *)
-
/* This sequence is computed with g(1e9,13) in the following program. */
g(n,k) = for(y=0,n,x=k*y^2+1;if(issquare(x),print1(floor(sqrt(x))",")))
-
a0=1;a1=649;for(n=2,30,a2=1298*a1-a0;a0=a1;a1=a2;print1(a2,",")) \\ Benoit Cloitre
-
Vec((1-649*x)/(1-1298*x+x^2) + O(x^100)) \\ Colin Barker, Jun 13 2015
A207832
Numbers x such that 20*x^2 + 1 is a perfect square.
Original entry on oeis.org
0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0
- Bruno Berselli, Table of n, a(n) for n = 0..500
- Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.
- Index entries for linear recurrences with constant coefficients, signature (18,-1).
-
m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
-
readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
-
LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}] (* Herbert Kociemba, Jun 05 2022 *)
-
makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */
A202156
y-values in the solution to x^2 - 13*y^2 = -1.
Original entry on oeis.org
5, 6485, 8417525, 10925940965, 14181862955045, 18408047189707445, 23893631070377308565, 31013914721302556809925, 40256037414619648361974085, 52252305550261582271285552405, 67823452348202119168480285047605, 88034788895660800419105138706238885
Offset: 1
- A. H. Beiler, Recreations in the Theory of Numbers: The Queen of Mathematics Entertains, Dover Publications (New York), 1966, p. 264.
- Bruno Berselli, Table of n, a(n) for n = 1..200
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
- Tanya Khovanova, Recursive Sequences.
- A. M. S. Ramasamy, Polynomial solutions for the Pell's equation, Indian Journal of Pure and Applied Mathematics 25 (1994), p. 579 (Theorem 4, case t=1).
- J. P. Robertson, Solving the generalized Pell equation x^2-D*y^2=N, pp. 9, 24.
- Index entries for linear recurrences with constant coefficients, signature (1298,-1).
-
m:=13; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(5*x*(1-x)/(1-1298*x+x^2)));
-
LinearRecurrence[{1298, -1}, {5, 6485}, 12]
-
makelist(expand(((18+5*sqrt(13))^(2*n-1)-(18-5*sqrt(13))^(2*n-1))/(2*sqrt(13))), n, 1, 12);
Showing 1-3 of 3 results.
Comments