cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A322969 Sum of the largest exponents A025479 of the first n perfect powers > 1.

Original entry on oeis.org

2, 5, 7, 11, 13, 16, 21, 23, 25, 31, 35, 37, 39, 42, 49, 51, 53, 55, 58, 60, 65, 73, 75, 77, 80, 82, 84, 86, 88, 97, 99, 101, 105, 107, 113, 115, 117, 119, 121, 124, 134, 136, 138, 140, 144, 147, 149, 151, 153, 155, 157, 160, 162, 164, 166, 168, 179, 181, 188
Offset: 1

Views

Author

Hugo Pfoertner, Jan 01 2019

Keywords

Examples

			a(1) = 2 because the first perfect power 4 = 2^2,
a(2) = 5: added exponent 3 from 8 = 2^3,
a(3) = 7: added exponent 2 from 9 = 3^2,
a(4) = 11: added largest exponent 4 from 16=2^4.
		

Crossrefs

Programs

  • Mathematica
    Union@ Accumulate@ Table[If[Set[e, GCD @@ #[[All, -1]]] > 1, e, 0] &@ FactorInteger@ n, {n, 4, 2400}] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    my(s=0); for(k=1, 3^7, if(j=ispower(k), print1(s+=j, ", ")))

A076407 Sum of perfect powers <= n.

Original entry on oeis.org

1, 1, 1, 5, 5, 5, 5, 13, 22, 22, 22, 22, 22, 22, 22, 38, 38, 38, 38, 38, 38, 38, 38, 38, 63, 63, 90, 90, 90, 90, 90, 122, 122, 122, 122, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 158, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207, 207
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 09 2002

Keywords

Examples

			Sum of the 8 perfect powers <= 32: a(32) = 1+4+8+9+16+25+27+32 = 122.
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N,1):
    pps:= {seq(seq(x^k,k=2..floor(log[x](N))),x=2..floor(sqrt(N)))}:
    for y in pps do
       V[y..N]:= V[y..N] +~ y
    od:
    convert(V,list); # Robert Israel, Oct 19 2023
  • PARI
    F(k,n) = (subst(bernpol(k+1), x, n+1) - subst(bernpol(k+1), x, 1)) / (k+1);
    a(n) = 1 - sum(k=2, logint(n,2), moebius(k) * (F(k, sqrtnint(n,k)) - 1)); \\ Daniel Suteu, Aug 19 2023

Formula

a(n) = 1 - Sum_{k=2..floor(log_2(n))} mu(k) * (F(k, floor(n^(1/k))) - 1), where F(k, n) = Sum_{j=1..n} j^k = (Bernoulli(k+1, n+1) - Bernoulli(k+1, 1))/(k+1). - Daniel Suteu, Aug 19 2023

A326119 a(n) is the absolute value of the alternating sum of the first n increasing perfect powers (A001597): 1, 1-4, 1-4+8, 1-4+8-9, ...

Original entry on oeis.org

1, 3, 5, 4, 12, 13, 14, 18, 18, 31, 33, 48, 52, 69, 56, 72, 72, 97, 99, 117, 108, 135, 121, 168, 156, 187, 174, 226, 215, 269, 243, 286, 290, 335, 341, 388, 396, 445, 455, 506, 494, 530, 559, 597, 628, 668, 663, 706, 738, 783, 817, 864, 864, 900, 949, 987, 1038
Offset: 1

Views

Author

Richard Locke Peterson, Sep 10 2019

Keywords

Examples

			For n=8: a(8) = |1 - 4 + 8 - 9 + 16 - 25 + 27 - 32|.
		

Crossrefs

Programs

  • Mathematica
    t = Select[Range@2400, # == 1 || GCD @@ Last /@ FactorInteger@# > 1 &]; Abs@ Accumulate[t (-1)^Range@ Length[t]] (* Giovanni Resta, Sep 11 2019 *)
  • PARI
    seq(n)={my(v=vector(n), i=0, k=0, s=0); while(i<#v, k++; if(ispower(k)||k==1, s=k-s; i++; v[i]=abs(s))); v} \\ Andrew Howroyd, Sep 10 2019

Formula

a(n) = abs(Sum_{k=1..n} (-1)^k*A001597(k)). - Andrew Howroyd, Sep 10 2019

A365019 Triangular numbers that for some k >= 0 are also the sum of the first k perfect powers.

Original entry on oeis.org

0, 1, 159284476
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 16 2023

Keywords

Examples

			159284476 is a term because 159284476 = 1 + 2 + 3 + 4 + ... + 17848 = 1 + 4 + 8 + 9 + ... + 574564 = 1^2 + 2^2 + 2^3 + 3^2 + ... + 758^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, Select[Accumulate[Select[Range[574564], # == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1 &]], IntegerQ[Sqrt[8 # + 1]] &]]

A380318 Product of the first n perfect powers (A001597).

Original entry on oeis.org

1, 1, 4, 32, 288, 4608, 115200, 3110400, 99532800, 3583180800, 175575859200, 11236854988800, 910185254092800, 91018525409280000, 11013241574522880000, 1376655196815360000000, 176211865192366080000000, 25374508587700715520000000, 4288291951321420922880000000, 840505222458998500884480000000, 181549128051143676191047680000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},FoldList[Times,Join[{1},Select[Range[250],GCD@@FactorInteger[#][[All,2]]>1&]]]] (* Harvey P. Dale, May 03 2025 *)
Showing 1-5 of 5 results.