Original entry on oeis.org
2, 11, 1361, 2521008887, 16022236204009818131831320183, 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499
Offset: 1
a(3) = 1361 = 11^3 + 30 = a(2)^3 + 30 and there is no smaller k such that a(2)^3 + k is prime. - _Jonathan Vos Post_, May 05 2006
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 137.
- Robert G. Wilson v, Table of n, a(n) for n = 1..8
- Chris K. Caldwell, Mills' Theorem - a generalization.
- Chris K. Caldwell and Yuanyou Chen, Determining Mills' Constant and a Note on Honaker's Problem, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.
- Steven R. Finch, Mills' Constant. [Broken link]
- Steven R. Finch, Mills' Constant. [From the Wayback machine]
- Dylan Fridman, Juli Garbulsky, Bruno Glecer, James Grime and Massi Tron Florentin, A Prime-Representing Constant, Amer. Math. Monthly, Vol. 126, No. 1 (2019), pp. 72-73; ResearchGate link, arXiv preprint, arXiv:2010.15882 [math.NT], 2020.
- James Grime and Brady Haran, Awesome Prime Number Constant, Numberphile video, 2013.
- Brian Hayes, Pumping the Primes, bit-player, Aug 19 2015.
- Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
- William H. Mills, A prime-representing function, Bull. Amer. Math. Soc., Vol. 53, No. 6 (1947), p. 604; Errata, ibid., Vol. 53, No 12 (1947), p. 1196.
- Simon Plouffe, The calculation of p(n) and pi(n), arXiv:2002.12137 [math.NT], 2020.
- László Tóth, A Variation on Mills-Like Prime-Representing Functions, arXiv:1801.08014 [math.NT], 2018.
- Juan L. Varona, A Couple of Transcendental Prime-Representing Constants, arXiv:2012.11750 [math.NT], 2020.
- Eric Weisstein's World of Mathematics, Mills' Prime.
- Eric Weisstein's World of Mathematics, Prime Formulas.
- Eric W. Weisstein, Table of n, a(n) for n = 1..13.
Cf.
A001358,
A055496,
A076656,
A006992,
A005384,
A005385,
A118908,
A118909,
A118910,
A118911,
A118912,
A118913.
Cf.
A224845 (integer lengths of Mills primes).
Cf.
A108739 (sequence of offsets b_n associated with Mills primes).
Cf.
A051021 (decimal expansion of Mills constant).
-
floor(A^(3^n), n=1..10); # A is Mills's constant: 1.306377883863080690468614492602605712916784585156713644368053759966434.. (A051021).
-
p = 1; Table[p = NextPrime[p^3], {6}] (* T. D. Noe, Sep 24 2008 *)
NestList[NextPrime[#^3] &, 2, 5] (* Harvey P. Dale, Feb 28 2012 *)
-
a(n)=if(n==1, 2, nextprime(a(n-1)^3)) \\ Charles R Greathouse IV, Jun 23 2017
-
apply( {A051254(n, p=2)=while(n--, p=nextprime(p^3));p}, [1..6]) \\ M. F. Hasler, Sep 11 2024
A118908
a(1) = 4; a(n) is greatest semiprime < a(n-1)^2.
Original entry on oeis.org
4, 15, 221, 48839, 2385247913, 5689407606470855563, 32369358912568429679140929317208046943, 1047775396410673232345014594095988998399127191704501568910205139392491645247
Offset: 1
a(6) = 32369358912568429679140929317208046943 = 1816568472934912211 * 17818958874845686213 = 5689407606470855563^2 - 26 < a(5)^2.
A118910
a(1) = 2; a(n) is greatest prime < a(n-1)^3.
Original entry on oeis.org
2, 7, 337, 38272739, 56062005704198360319209, 176199995814327287356671209104585864397055039072110696028654438846269
Offset: 1
a(5) = 62343227157465615355481 = a(4)^3 - 32 = 39651817^3 - 32 and there is no k < 32 such that 39651817^3 - k is prime.
-
a=2; Join[{2}, Table[a=a^3; While[ !PrimeQ[a], a=a-1]; a, {5}]] (* T. D. Noe, Nov 15 2006 *)
A229610
Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the least prime > 3*p.
Original entry on oeis.org
2, 7, 3, 23, 11, 5, 71, 37, 17, 13, 223, 113, 53, 41, 19, 673, 347, 163, 127, 59, 29, 2027, 1049, 491, 383, 179, 89, 31, 6089, 3163, 1481, 1151, 541, 269, 97, 43, 18269, 9491, 4447, 3457, 1627, 809, 293, 131, 47, 54829, 28477, 13367, 10391, 4889, 2437, 881
Offset: 1
Northwest corner:
2, 7, 23, 71, 223, 673, ...
3, 11, 37, 113, 347, 1049, ...
5, 17, 53, 163, 491, 1481, ...
13, 41, 127, 383, 1151, 3457, ...
19, 59, 179, 541, 1627, 4889, ...
29, 89, 269, 809, 2437, 7331, ...
-
seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[3*Last[arr2[1]]]], {seqL}]; Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[3*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm
t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)
Incorrect comment deleted by
Peter Munn, Aug 15 2017
A118909
a(1) = 4; a(n) is least semiprime > a(n-1)^2.
Original entry on oeis.org
4, 21, 445, 198026, 39214296677, 1537761063871773242347, 2364709089560047865452947255794201194068433, 5591849078247910476736920566826713466552016538943524658263883555662554776622687075541
Offset: 1
a(8) = a(7)^2 + 52 and there is no smaller k such that a(7)^2 + k is semiprime.
-
nxt[n_]:=Module[{sp=n^2+1},While[PrimeOmega[sp]!=2,sp++];sp]; NestList[nxt,4,7] (* Harvey P. Dale, Oct 22 2012 *)
-
from itertools import accumulate
from sympy.ntheory.factor_ import primeomega
def nextsemiprime(n):
while primeomega(n + 1) != 2: n += 1
return n + 1
def f(anm1, _): return nextsemiprime(anm1**2)
print(list(accumulate([4]*6, f))) # Michael S. Branicky, Apr 21 2021
A118476
a(0) = 1; a(n) is least k with n prime factors and k > n*a(n-1).
Original entry on oeis.org
1, 2, 6, 20, 81, 408, 2480, 17376, 139040, 1251450, 12514816, 137663064, 1651956992, 21475443200, 300656206080, 4509843098112, 72157489576704, 1226677322842112, 22080191811166208, 419523644412176256, 8390472888243683328, 176199930653117513728
Offset: 0
a(1) = 2 because 2 is the smallest prime (integer with 1 prime factor) greater than 1 * 1 = 1.
a(2) = 6 because 6 = 2 * 3 is the smallest semiprime (integer with 2 prime factors) greater than 2 * 2 = 4.
a(3) = 20 because 20 = 2^2*5 is the smallest 3-almost prime (integer with 3 prime factors) greater than 3 * 6 = 18.
-
A118476 := proc(n) option remember; local k; if n = 0 then 1; else for k from n*procname(n-1)+1 do if numtheory[bigomega](k) = n then return k; end if; end do: end if; end proc:
seq(A118476(n),n=0..14) ; # R. J. Mathar, Dec 22 2010
-
lkpf[{n_,a_}]:=Module[{k=a(n+1)+1},While[PrimeOmega[k]!=n+1,k++];{n+1,k}]; NestList[lkpf,{0,1},21][[All,2]] (* Harvey P. Dale, Aug 25 2019 *)
A118912
a(1) = 2; a(n) is greatest prime < a(n-1)^4.
Original entry on oeis.org
2, 13, 28559, 665230244078823349, 195833931687186822327230545227550596864953022841534058316595001440791433
Offset: 1
a(1) = 2, by definition.
a(2) = 13 = 2^4 - 3.
a(3) = 28559 = 13^4 - 2.
a(4) = 665230244078823349 = 28559^4 - 12.
a(5) = 195833931687186822327230545227550596864953022841534058316595001440791433 = 665230244078823349^4 - 168.
a(6) is too large to include.
A117880
a(1) = 4; a(n) is smallest semiprime > 2*a(n-1).
Original entry on oeis.org
4, 9, 21, 46, 93, 187, 377, 755, 1513, 3027, 6059, 12127, 24257, 48529, 97059, 194127, 388257, 776515, 1553033, 3106083, 6212177, 12424355, 24848723, 49697447, 99394909, 198789819, 397579639, 795159283, 1590318573, 3180637153
Offset: 1
a(1)=4, then
k=1, a(2)=2*4+1=9,
k=3, a(3)=2*9+3=21,
k=4, a(4)=2*21+4=46,
k=1, a(5)=2*46+1=93,
k=1, a(6)=2*93+1=187.
-
a=0;Do[Do[b=2a+n;If[2==Plus@@FactorInteger[b][[All,2]],Print[b];Break[]],{n,1000}];a=b,{40}] (* Zak Seidov, Dec 24 2007 *)
ssp[n_]:=Module[{k=2n+1},While[PrimeOmega[k]!=2,k++];k]; NestList[ssp,4,30] (* Harvey P. Dale, Apr 14 2022 *)
A117916
a(1) = 4; a(n) is smallest semiprime > 3*a(n-1).
Original entry on oeis.org
4, 14, 46, 141, 427, 1282, 3849, 11553, 34663, 104001, 312005, 936017, 2808053, 8424161, 25272487, 75817463, 227452391, 682357183, 2047071551, 6141214658, 18423643982, 55270931959, 165812795887, 497438387665, 1492315162999
Offset: 1
-
nxt[n_]:=Module[{c=3n,k=1},While[PrimeOmega[c+k]!=2,k++];c+k]; NestList[ nxt,1,30] (* Harvey P. Dale, May 31 2012 *)
Showing 1-9 of 9 results.
Comments