cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A051254 Mills primes.

Original entry on oeis.org

2, 11, 1361, 2521008887, 16022236204009818131831320183, 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499
Offset: 1

Views

Author

Keywords

Comments

Mills showed that there is a number A > 1 but not an integer, such that floor( A^(3^n) ) is a prime for all n = 1, 2, 3, ... A is approximately 1.306377883863... (see A051021).
a(1) = 2 and (for n > 1) a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006, corrected by M. F. Hasler, Sep 11 2024
The name refers to the American mathematician William Harold Mills (1921-2007). - Amiram Eldar, Jun 23 2021

Examples

			a(3) = 1361 = 11^3 + 30 = a(2)^3 + 30 and there is no smaller k such that a(2)^3 + k is prime. - _Jonathan Vos Post_, May 05 2006
		

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 137.

Crossrefs

Cf. A224845 (integer lengths of Mills primes).
Cf. A108739 (sequence of offsets b_n associated with Mills primes).
Cf. A051021 (decimal expansion of Mills constant).

Programs

  • Maple
    floor(A^(3^n), n=1..10); # A is Mills's constant: 1.306377883863080690468614492602605712916784585156713644368053759966434.. (A051021).
  • Mathematica
    p = 1; Table[p = NextPrime[p^3], {6}] (* T. D. Noe, Sep 24 2008 *)
    NestList[NextPrime[#^3] &, 2, 5] (* Harvey P. Dale, Feb 28 2012 *)
  • PARI
    a(n)=if(n==1, 2, nextprime(a(n-1)^3)) \\ Charles R Greathouse IV, Jun 23 2017
    
  • PARI
    apply( {A051254(n, p=2)=while(n--, p=nextprime(p^3));p}, [1..6]) \\ M. F. Hasler, Sep 11 2024

Formula

a(1) = 2; a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006

Extensions

Edited by N. J. A. Sloane, May 05 2007

A118908 a(1) = 4; a(n) is greatest semiprime < a(n-1)^2.

Original entry on oeis.org

4, 15, 221, 48839, 2385247913, 5689407606470855563, 32369358912568429679140929317208046943, 1047775396410673232345014594095988998399127191704501568910205139392491645247
Offset: 1

Views

Author

Jonathan Vos Post, May 05 2006

Keywords

Comments

Semiprime analog of A059785 a(n+1)=prevprime(a(n)^2), with a(1) = 2. With that, of course, there's always a prime between n and 2n, so a(n) < 2^n. See also A055496 a(1) = 2; a(n) is smallest prime > 2*a(n-1). The obverse of this is A118909 a(1) = 4; a(n) is least semiprime > a(n-1)^2.
a(9), which is too large to be included, is equal to a(8)^2-3. - Giovanni Resta, Jun 16 2016

Examples

			a(6) = 32369358912568429679140929317208046943 = 1816568472934912211 * 17818958874845686213 = 5689407606470855563^2 - 26 < a(5)^2.
		

Crossrefs

A118910 a(1) = 2; a(n) is greatest prime < a(n-1)^3.

Original entry on oeis.org

2, 7, 337, 38272739, 56062005704198360319209, 176199995814327287356671209104585864397055039072110696028654438846269
Offset: 1

Views

Author

Jonathan Vos Post, May 05 2006

Keywords

Comments

Exponent 3 analog of A059785.
Obverse of this is A051254.

Examples

			a(5) = 62343227157465615355481 = a(4)^3 - 32 = 39651817^3 - 32 and there is no k < 32 such that 39651817^3 - k is prime.
		

Crossrefs

Programs

  • Mathematica
    a=2; Join[{2}, Table[a=a^3; While[ !PrimeQ[a], a=a-1]; a, {5}]] (* T. D. Noe, Nov 15 2006 *)

Extensions

Corrected by T. D. Noe, Nov 15 2006

A229610 Array: each row starts with the least prime not in a previous row, and each prime p in a row is followed by the least prime > 3*p.

Original entry on oeis.org

2, 7, 3, 23, 11, 5, 71, 37, 17, 13, 223, 113, 53, 41, 19, 673, 347, 163, 127, 59, 29, 2027, 1049, 491, 383, 179, 89, 31, 6089, 3163, 1481, 1151, 541, 269, 97, 43, 18269, 9491, 4447, 3457, 1627, 809, 293, 131, 47, 54829, 28477, 13367, 10391, 4889, 2437, 881
Offset: 1

Views

Author

Clark Kimberling, Sep 26 2013

Keywords

Comments

Conjectures: (row 1) = A076656, (column 1) = A164958, and for each row r(k), the limit of r(k)/3^k exists. For rows 1 to 4, the respective limits are 0.928655..., 1.447047..., 2.038260..., 4.753271... .

Examples

			Northwest corner:
   2,  7,  23,  71,  223,  673, ...
   3, 11,  37, 113,  347, 1049, ...
   5, 17,  53, 163,  491, 1481, ...
  13, 41, 127, 383, 1151, 3457, ...
  19, 59, 179, 541, 1627, 4889, ...
  29, 89, 269, 809, 2437, 7331, ...
		

Crossrefs

Programs

  • Mathematica
    seqL = 14; arr2[1] = {2}; Do[AppendTo[arr2[1], NextPrime[3*Last[arr2[1]]]], {seqL}]; Do[tmp = Union[Flatten[Map[arr2, Range[z]]]]; arr2[z] = {Prime[NestWhile[# + 1 &, 1, PrimePi[tmp[[#]]] - # == 0 &]]}; Do[AppendTo[arr2[z], NextPrime[3*Last[arr2[z]]]], {seqL}], {z, 2, 12}]; m = Map[arr2, Range[12]]; m // TableForm
    t = Table[m[[n - k + 1]][[k]], {n, 12}, {k, n, 1, -1}] // Flatten (* Peter J. C. Moses, Sep 26 2013 *)

Extensions

Incorrect comment deleted by Peter Munn, Aug 15 2017

A118909 a(1) = 4; a(n) is least semiprime > a(n-1)^2.

Original entry on oeis.org

4, 21, 445, 198026, 39214296677, 1537761063871773242347, 2364709089560047865452947255794201194068433, 5591849078247910476736920566826713466552016538943524658263883555662554776622687075541
Offset: 1

Views

Author

Jonathan Vos Post, May 05 2006

Keywords

Comments

Semiprime analog of A055496 a(1) = 2; a(n) is smallest prime > 2*a(n-1). See also A059785 a(n+1)=prevprime(a(n)^2), with a(1) = 2. With that, of course, there's always a prime between n and 2n, so a(n) < 2^n. The obverse of this is A118908 a(1) = 4; a(n) is greatest semiprime < a(n-1)^2.

Examples

			a(8) = a(7)^2 + 52 and there is no smaller k such that a(7)^2 + k is semiprime.
		

Crossrefs

Programs

  • Mathematica
    nxt[n_]:=Module[{sp=n^2+1},While[PrimeOmega[sp]!=2,sp++];sp]; NestList[nxt,4,7] (* Harvey P. Dale, Oct 22 2012 *)
  • Python
    from itertools import accumulate
    from sympy.ntheory.factor_ import primeomega
    def nextsemiprime(n):
      while primeomega(n + 1) != 2: n += 1
      return n + 1
    def f(anm1, _): return nextsemiprime(anm1**2)
    print(list(accumulate([4]*6, f))) # Michael S. Branicky, Apr 21 2021

A118476 a(0) = 1; a(n) is least k with n prime factors and k > n*a(n-1).

Original entry on oeis.org

1, 2, 6, 20, 81, 408, 2480, 17376, 139040, 1251450, 12514816, 137663064, 1651956992, 21475443200, 300656206080, 4509843098112, 72157489576704, 1226677322842112, 22080191811166208, 419523644412176256, 8390472888243683328, 176199930653117513728
Offset: 0

Views

Author

Jonathan Vos Post, May 04 2006

Keywords

Comments

This is a super-polynomial function, as for positive n, a(n) > n!.
Prime factors counted with multiplicity. - Harvey P. Dale, Aug 25 2019

Examples

			a(1) = 2 because 2 is the smallest prime (integer with 1 prime factor) greater than 1 * 1 = 1.
a(2) = 6 because 6 = 2 * 3 is the smallest semiprime (integer with 2 prime factors) greater than 2 * 2 = 4.
a(3) = 20 because 20 = 2^2*5 is the smallest 3-almost prime (integer with 3 prime factors) greater than 3 * 6 = 18.
		

Crossrefs

Programs

  • Maple
    A118476 := proc(n) option remember; local k; if n = 0 then 1; else for k from n*procname(n-1)+1 do if numtheory[bigomega](k) = n then return k; end if; end do: end if; end proc:
    seq(A118476(n),n=0..14) ; # R. J. Mathar, Dec 22 2010
  • Mathematica
    lkpf[{n_,a_}]:=Module[{k=a(n+1)+1},While[PrimeOmega[k]!=n+1,k++];{n+1,k}]; NestList[lkpf,{0,1},21][[All,2]] (* Harvey P. Dale, Aug 25 2019 *)

Formula

a(0) = 1; a(n) least n-almost prime > n*a(n-1).

Extensions

Terms corrected from a(4) on by R. J. Mathar, Dec 22 2010
a(15)-a(21) from Donovan Johnson, Jan 06 2011

A118912 a(1) = 2; a(n) is greatest prime < a(n-1)^4.

Original entry on oeis.org

2, 13, 28559, 665230244078823349, 195833931687186822327230545227550596864953022841534058316595001440791433
Offset: 1

Views

Author

Jonathan Vos Post, May 05 2006

Keywords

Comments

Exponent-4 analog of A059785 a(n+1)=prevprime(a(n)^2), with exponent 3 being A118910 a(1) = 2; a(n) is greatest prime < a(n-1)^3.

Examples

			a(1) = 2, by definition.
a(2) = 13 = 2^4 - 3.
a(3) = 28559 = 13^4 - 2.
a(4) = 665230244078823349 = 28559^4 - 12.
a(5) = 195833931687186822327230545227550596864953022841534058316595001440791433 = 665230244078823349^4 - 168.
a(6) is too large to include.
		

Crossrefs

Programs

  • Mathematica
    NestList[NextPrime[#^4,-1]&,2,5] (* Harvey P. Dale, Feb 18 2025 *)

Formula

a(1) = 2; a(n) is greatest prime < a(n-1)^4.

A117880 a(1) = 4; a(n) is smallest semiprime > 2*a(n-1).

Original entry on oeis.org

4, 9, 21, 46, 93, 187, 377, 755, 1513, 3027, 6059, 12127, 24257, 48529, 97059, 194127, 388257, 776515, 1553033, 3106083, 6212177, 12424355, 24848723, 49697447, 99394909, 198789819, 397579639, 795159283, 1590318573, 3180637153
Offset: 1

Views

Author

Jonathan Vos Post, May 04 2006

Keywords

Comments

a(1)=4, a(n)=2*a(n-1)+k, where k is least positive integer chosen so that a(n) is the product of two primes. Corresponding k's are 1, 3, 4, 1, 1, 3, 1, 3, 1, 5, 9, 3, 15, 1, 9, 3, 1, 3, 17, 11, 1, 13, 1, 15, 1, 1, 5, 7, 7, 11, 5, 5, 15, 1, 3, 9, 9, 5, 7, 8, ... - Zak Seidov, Dec 24 2007

Examples

			a(1)=4, then
k=1, a(2)=2*4+1=9,
k=3, a(3)=2*9+3=21,
k=4, a(4)=2*21+4=46,
k=1, a(5)=2*46+1=93,
k=1, a(6)=2*93+1=187.
		

Crossrefs

Semiprime analog of A055496.

Programs

  • Mathematica
    a=0;Do[Do[b=2a+n;If[2==Plus@@FactorInteger[b][[All,2]],Print[b];Break[]],{n,1000}];a=b,{40}] (* Zak Seidov, Dec 24 2007 *)
    ssp[n_]:=Module[{k=2n+1},While[PrimeOmega[k]!=2,k++];k]; NestList[ssp,4,30] (* Harvey P. Dale, Apr 14 2022 *)

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar

A117916 a(1) = 4; a(n) is smallest semiprime > 3*a(n-1).

Original entry on oeis.org

4, 14, 46, 141, 427, 1282, 3849, 11553, 34663, 104001, 312005, 936017, 2808053, 8424161, 25272487, 75817463, 227452391, 682357183, 2047071551, 6141214658, 18423643982, 55270931959, 165812795887, 497438387665, 1492315162999
Offset: 1

Views

Author

Jonathan Vos Post, May 04 2006

Keywords

Comments

Semiprime analog of A076656 a(1) = 2; a(n) is smallest prime > 3*a(n-1). a(n)-a(n-1) is often 1, never more than 16 through n = 28, then jumps to 32 for n = 29; and I wonder what its value or mean value is asymptotically as a function of n.

Crossrefs

Programs

  • Mathematica
    nxt[n_]:=Module[{c=3n,k=1},While[PrimeOmega[c+k]!=2,k++];c+k]; NestList[ nxt,1,30] (* Harvey P. Dale, May 31 2012 *)
Showing 1-9 of 9 results.