A076952
n-th power associated with A076951, or 0 if no such number exists.
Original entry on oeis.org
0, 1, 8, 0, 1024, 0, 279936, 0, 512, 59049, 100000000000, 0, 106993205379072, 0, 155568095557812224, 0, 295147905179352825856, 0, 708235345355337676357632, 0, 476837158203125, 0, 7511413302012830262726227918848, 0, 1125899906842624
Offset: 1
A110567
a(n) = n^(n+1) + 1.
Original entry on oeis.org
1, 2, 9, 82, 1025, 15626, 279937, 5764802, 134217729, 3486784402, 100000000001, 3138428376722, 106993205379073, 3937376385699290, 155568095557812225, 6568408355712890626, 295147905179352825857, 14063084452067724991010
Offset: 0
Examples illustrating the Comment:
a(2) = 9 because the first positive integer (base 2) with a block of 2 consecutive zeros is 100 (base 2) = 4, and the 2nd is 1001 (base 2) = 9 = 1 + 2^3.
a(3) = 82 because the first positive integer (base 3) with a block of 3 consecutive zeros is 1000 (base 3) = 81, the 2nd is 2000 (base 3) = 54 and the 3rd is 10001 (base 3) = 82 = 1 + 3^4.
a(4) = 1025 because the first positive integer (base 4) with a block of 4 consecutive zeros is 10000 (base 4) = 256, the 2nd is 20000 (base 4) = 512, the 3rd is 30000 (base 4) = 768 and the 4th 100001 (base 4) = 1025 = 1 + 4^5. and the 2nd is 1001 (base 2) = 9 = 1 + 2^3.
-
[n^(n+1) + 1: n in [0..25]]; // G. C. Greubel, Oct 16 2017
-
Table[n^(n+1)+1,{n,0,30}] (* Harvey P. Dale, Oct 30 2015 *)
-
for(n=0,25, print1(1 + n^(n+1), ", ")) \\ G. C. Greubel, Aug 31 2017
A081215
a(n) = (n^(n+1)+(-1)^n)/(n+1)^2.
Original entry on oeis.org
1, 0, 1, 5, 41, 434, 5713, 90075, 1657009, 34867844, 826446281, 21794641505, 633095889817, 20088655029078, 691413758034721, 25657845139503479, 1021273028302258913, 43404581642184336392, 1961870762757168078553
Offset: 0
Showing 1-3 of 3 results.
Comments