A077497 Primes of the form 2^r*5^s + 1.
2, 3, 5, 11, 17, 41, 101, 251, 257, 401, 641, 1601, 4001, 16001, 25601, 40961, 62501, 65537, 160001, 163841, 16384001, 26214401, 40960001, 62500001, 104857601, 167772161, 256000001, 409600001, 655360001, 2441406251, 2500000001, 4194304001, 10485760001
Offset: 1
Keywords
Examples
101 is in the sequence, since 101 = 2^2*5^2 + 1 and 101 is prime.
Links
- Ray Chandler, Table of n, a(n) for n = 1..3150
Programs
-
GAP
K:=10^7;; # to get all terms <= K. A:=Filtered(Filtered([1..K],i-> i mod 6=5),IsPrime);; B:=List(A,i->Factors(i-1));; C:=[];; for i in B do if Elements(i)=[2] or Elements(i)=[2,5] then Add(C,Position(B,i)); fi; od; A077497:=Concatenation([2,3],List(C,i->A[i])); # Muniru A Asiru, Sep 03 2017
-
Mathematica
Do[p=Prime[k];s=FindInstance[p x == p 10^p+x,x,Integers];If[s!={},Print[p]],{k,10000}] (* Vicente Izquierdo Gomez, Feb 20 2013 *)
-
PARI
list(lim)=my(v=List(),t);for(r=0,log(lim)\log(5),t=5^r;while(t<=lim,if(isprime(t+1),listput(v,t+1)); t<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jan 29 2013
Extensions
Corrected and extended by Reinhard Zumkeller, Nov 19 2002
More terms from Ray Chandler, Aug 02 2003
Comments