A078902
Generalized Fermat primes of the form (k+1)^2^m + k^2^m, with m>1.
Original entry on oeis.org
17, 97, 257, 337, 881, 3697, 10657, 16561, 49297, 65537, 66977, 89041, 149057, 847601, 988417, 1146097, 1972097, 2070241, 2522257, 2836961, 3553777, 3959297, 4398577, 5385761, 7166897, 11073217, 17653681, 32530177, 41532497, 44048497
Offset: 1
A080121
a(n) is the smallest k > 0 such that n^2^k + (n+1)^2^k is prime, or -1 if no such k exists.
Original entry on oeis.org
1, 1, 2, 1, 1, 2, 1, 2, 1, 5
Offset: 1
A122900
Minimum prime of the form n^k + (n+1)^k for k>1, or 0 if no such prime exists.
Original entry on oeis.org
5, 13, 337, 41, 61, 3697, 113, 10657, 181, 2211377674535255285545615254209921
Offset: 1
a(1) = 5 because 1^2 + 2^2 = 5 is prime.
a(2) = 13 because 2^2 + 3^2 = 13 is prime.
a(3) = 337 because 3^4 + 4^4 = 337 is prime but 3^3 + 4^3 = 91 and 3^2 + 4^2 = 25 are composite.
A122902
First occurrence of exponent n in A080121 corresponding to the minimum prime of the form (k^(2^n) + (k+1)^(2^n)) = A122900(k).
Original entry on oeis.org
1, 3, 23, 21, 10, 95, 255, 86, 59
Offset: 1
A080121 begins with 1,1,2,1,1,2,1,2,1,5,?,1,2,1,?,2,1,?,1,?,4,1,3,1,..., where the unknown terms (denoted with ?) are at least 10. So a(1) = 1, a(2) = 3, a(3) = 23, a(4) = 21, a(5) = 10.
A253242
Least k>=0 such that n^(2^k)+1 is prime (for even n), or (n^(2^k)+1)/2 is prime (for odd n); -1 if no such k exists.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, -1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 0, 2, 1, 0, 1, -1, 0, 1, 0
Offset: 2
a(7) = 2 since (7^(2^0)+1)/2 and (7^(2^1)+1)/2 are not primes, but (7^(2^2)+1)/2 = 1201 is prime.
a(14) = 1 since 14^(2^0)+1 is not prime, but 14^(2^1)+1 = 197 is prime.
- Eric Chen, Table of n, a(n) for n = 2..1500 status (for the -1s, only a(n) for n in A070265 are proved, all other -1s are only conjectured)
- Gary Barnes, List of generalized Fermat primes in even bases up to 1030
- Eric Chen, List of generalized Fermat primes in bases up to 1000
- Chris Caldwell, Generalized Fermat number
- Richard Fischer, List of generalized Fermat primes in odd bases
- Yves Gallot, Generalized Fermat prime search
- Wilfrid Keller, Factorization of GFN(n,2)
- Wilfrid Keller, Factorization of GFN(n,3)
- Wilfrid Keller, Factorization of GFN(n,5)
- Wilfrid Keller, Factorization of GFN(n,6)
- Wilfrid Keller, Factorization of GFN(n,10)
- Wilfrid Keller, Factorization of GFN(n,12)
- Jeppe Stig Salling Nielsen, List of generalized Fermat primes in even bases up to 1000
- MathWorld, Generalized Fermat number
- OEIS wiki, Generalized Fermat number
- Wikipedia, Generalized Fermat number
-
Table[k=0; While[p=If[EvenQ[n], (2n)^(2^k)+1, ((2n)^(2^k)+1)/2]; k<12 && !PrimeQ[p], k=k+1]; If[k==12, -1, k], {n, 2, 1500}]
-
f(n) = for(k=0, 11, if(ispseudoprime(n^(2^k)+1), return(k))); -1
g(n) = for(k=0, 11, if(ispseudoprime((n^(2^k)+1)/2), return(k))); -1
a(n) = if(n%2==0, f(n), g(n))
-
f(n,k)=if(n%2, (n^(2^k)+1)/2, n^(2^k)+1)
a(n)=if(ispower(-n), -1, my(k); while(!ispseudoprime(f(n,k)), k++); k) \\ Charles R Greathouse IV, Apr 20 2015
Original entry on oeis.org
17, 114, 371, 708, 1589, 5286, 15943, 32504, 81801, 147338, 214315, 303356, 452413, 1300014, 2288431, 3434528, 5406625, 7476866, 9999123, 12836084, 16389861, 20349158, 24747735, 30133496, 37300393, 48373610, 66027291, 98557468
Offset: 1
a(29) = 17 + 97 + 257 + 337 + 881 + 3697 + 10657 + 16561 + 49297 + 65537 + 66977 + 89041 + 149057 + 847601 + 988417 + 1146097 + 1972097 + 2070241 + 2522257 + 2836961 + 3553777 + 3959297 + 4398577 + 5385761 + 7166897 + 11073217 + 17653681 + 32530177 + 41532497 + 44048497.
Showing 1-6 of 6 results.
Comments