cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077939 Expansion of 1/(1 - 2*x - x^2 - x^3).

Original entry on oeis.org

1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, 148724, 378773, 964666, 2456829, 6257097, 15935689, 40585304, 103363394, 263247781, 670444260, 1707499695, 4348691431, 11075326817, 28206844760, 71837707768, 182957587113, 465959726754
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

These coefficients are called the Tripell numbers by Bravo et al. - Rigoberto Florez, Jan 23 2020

Programs

  • GAP
    a:=[1,2,5];; for n in [4..30] do a[n]:=2*a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 05 2020
  • Magma
    I:=[1,2,5]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) +Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 05 2020
    
  • Maple
    m:=30; S:=series(1/(1-2*x-x^2-x^3), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 05 2020
  • Mathematica
    CoefficientList[Series[1/(1-2*x-x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{2,1,1},{1,2,5},40] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
    a[n_]:=a[n]=2a[n-1]+a[n-2]+a[n-3]; a[0]=0; a[1]=1; a[2]=2; Table[a[n], {n,30}] (* Rigoberto Florez, Jan 23 2020 *)
  • Maxima
    a(n):=sum(sum((sum(binomial(j,n-m-3*k+2*j+1)*binomial(k,j),j,0,k))* binomial(m+k-1,m-1),k,0,n-m+1),m,1,n+1); /* Vladimir Kruchinin, Oct 11 2011 */
    
  • PARI
    Vec(1/(1-2*x-x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    def A077939_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return (1/(1-2*x-x^2-x^3)).list()
    A077939_list(30) # G. C. Greubel, Feb 05 2020
    

Formula

a(n) = abs(A077986(n)) = A077849(n) - A077849(n-1) = |A077922(n)| + |A077922(n-1)| = Sum_{k=0..n} A077997(k). - Ralf Stephan, Feb 02 2004
a(n) = Sum_{m=1..n+1} Sum_{k=0..n-m+1} (Sum_{j=0..k} binomial(j,n-m-3*k+2*j+1) *binomial(k,j))*binomial(m+k-1,m-1). - Vladimir Kruchinin, Oct 11 2011
G.f. for sequence with 1 prepended: 1/(1 - Sum_{k>=0} x*(x+x^2+x^3)^k). - Joerg Arndt, Sep 30 2012
G.f.: Q(0)/2, where Q(k) = 1 + 1/(1- x*(4*k+2 + x+x^2)/(x*(4*k+4 + x+x^2) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Oct 04 2013
a(n) = 2*a(n-1) + a(n-2) + a(n-3), where a(0) = 0, a(1)=1, a(2)=2. - Rigoberto Florez, Jan 23 2020

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A010907 Pisot sequence E(4,19), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).

Original entry on oeis.org

4, 19, 90, 426, 2016, 9541, 45154, 213697, 1011348, 4786332, 22651920, 107203069, 507352048, 2401107571, 11363544486, 53779407822, 254517831936, 1204537747753, 5700626846950, 26978935702753, 127681216679304, 604267465267128, 2859772009358880, 13534231802298265, 64052459384483260, 303136344428812723, 1434630991482656082, 6789572149788327282
Offset: 0

Views

Author

Keywords

References

  • Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

Crossrefs

Cf. A077922.

Programs

  • Mathematica
    PSE[a_,b_,n_]:=Join[{x=a,y=b}, Table[z=Floor[y^2/x+1/2]; x=y; y=z, {n}]]; A010907=PSE[4,19,20] (* Zak Seidov, Mar 24 2011 *)
    nxt[{a_,b_}]:={b,Floor[b^2/a+1/2]}; Transpose[NestList[nxt,{4,19},20]] [[1]] (* Harvey P. Dale, Mar 13 2016 *)

Formula

Theorem: a(n) = 4 a(n - 1) + 3 a(n - 2) + 2 a(n - 3) + a(n - 4). (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016
G.f.: -(x^3+2*x^2+3*x+4)/(x^4+2*x^3+3*x^2+4*x-1). [Colin Barker, Nov 29 2012] (This follows from the above recurrence. - N. J. A. Sloane, Sep 09 2016)
Showing 1-2 of 2 results.