cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A089068 a(n) = a(n-1)+a(n-2)+a(n-3)+2 with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 23, 43, 80, 148, 273, 503, 926, 1704, 3135, 5767, 10608, 19512, 35889, 66011, 121414, 223316, 410743, 755475, 1389536, 2555756, 4700769, 8646063, 15902590, 29249424, 53798079, 98950095, 181997600, 334745776, 615693473
Offset: 0

Views

Author

Roger L. Bagula, Dec 03 2003

Keywords

Comments

The a(n+2) represent the Kn12 and Kn22 sums of the square array of Delannoy numbers A008288. See A180662 for the definition of these knight and other chess sums. - Johannes W. Meijer, Sep 21 2010

Crossrefs

Cf. A000073 (Kn11 & Kn21), A089068 (Kn12 & Kn22), A180668 (Kn13 & Kn23), A180669 (Kn14 & Kn24), A180670 (Kn15 & Kn25). - Johannes W. Meijer, Sep 21 2010

Programs

  • Mathematica
    Join[{a=0,b=0,c=1},Table[d=a+b+c+2;a=b;b=c;c=d,{n,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
    RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+2}, a[n],{n,40}] (* or *) LinearRecurrence[{2,0,0,-1},{0,0,1,3},40] (* Harvey P. Dale, Sep 19 2011 *)

Formula

a(n) = A008937(n-2)+A008937(n-1). - Johannes W. Meijer, Sep 21 2010
a(n) = A018921(n-5)+A018921(n-4), n>4. - Johannes W. Meijer, Sep 21 2010
a(n) = A000073(n+2)-1. - R. J. Mathar, Sep 22 2010
From Johannes W. Meijer, Sep 22 2010: (Start)
a(n) = a(n-1)+A001590(n+1).
a(n) = Sum_{m=0..n} A040000(m)*A000073(n-m).
a(n+2) = Sum_{k=0..floor(n/2)} A008288(n-k+1,k+1).
G.f. = x^2*(1+x)/((1-x)*(1-x-x^2-x^3)). (End)
a(n) = 2*a(n-1)-a(n-4), a(0)=0, a(1)=0, a(2)=1, a(3)=3. - Bruno Berselli, Sep 23 2010

Extensions

Corrected and information added by Johannes W. Meijer, Sep 22 2010, Oct 22 2010
Definition based on arbitrarily set floating-point precision removed by R. J. Mathar, Sep 30 2010

A103142 a(n) = 2*a(n-1) + a(n-2) + a(n-3) + a(n-4), with a(0)=1, a(1)=2, a(3)=5, a(4)=13.

Original entry on oeis.org

1, 2, 5, 13, 34, 88, 228, 591, 1532, 3971, 10293, 26680, 69156, 179256, 464641, 1204374, 3121801, 8091873, 20974562, 54367172, 140922580, 365278767, 946821848, 2454212215, 6361447625, 16489208080, 42740897848, 110786663616, 287164880785, 744346531114
Offset: 0

Views

Author

Paul Barry, Jan 24 2005

Keywords

Comments

Row sums of generalized Pascal matrix A103141.
Generalized Pell numbers.
Row sums of the tetranacci convolution triangle A202193. - Philippe Deléham, Feb 16 2014

Crossrefs

Row sums of A103141 and of A202193.

Programs

  • GAP
    a:=[1,2,5,13];; for n in [5..40] do a[n]:=2*a[n-1]+a[n-2]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Feb 12 2020
  • Magma
    I:=[1,2,5,13]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)+Self(n-3) +Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 05 2012
    
  • Maple
    m:=40; S:=series(1/(1-2*x-x^2-x^3-x^4), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 12 2020
  • Mathematica
    LinearRecurrence[{2,1,1,1}, {1,2,5,13}, 40] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
  • PARI
    Vec(1/(1-2*x-x^2-x^3-x^4)+O(x^40)) \\ Charles R Greathouse IV, Jun 20 2011
    
  • Sage
    def A103142_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x-x^2-x^3-x^4) ).list()
    A103142_list(40) # G. C. Greubel, Feb 12 2020
    

Formula

a(n) = 2*a(n-1) + a(n-2) + a(n-3) + a(n-4).
G.f.: 1/(1 - 2*x - x^2 - x^3 - x^4).

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A077986 Expansion of 1/(1 + 2*x - x^2 + x^3).

Original entry on oeis.org

1, -2, 5, -13, 33, -84, 214, -545, 1388, -3535, 9003, -22929, 58396, -148724, 378773, -964666, 2456829, -6257097, 15935689, -40585304, 103363394, -263247781, 670444260, -1707499695, 4348691431, -11075326817, 28206844760, -71837707768, 182957587113, -465959726754
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A077939.

Programs

  • GAP
    a:=[1,-2,5];; for n in [4..30] do a[n]:=-2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1+2*x-x^2+x^3) )); // G. C. Greubel, Jun 25 2019
    
  • Maple
    m:=30; S:=series(1/(1+2*x-x^2+x^3), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 26 2020
  • Mathematica
    CoefficientList[Series[1/(1+2x-x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[ {-2,1,-1},{1,-2,5},30] (* Harvey P. Dale, Feb 14 2014 *)
    b[n_]:= b[n]= If[n<3, n, 2*b[n-1] +b[n-2] +b[n-3]]; Table[(-1)^n*b[n+1], {n, 0, 30}] (* Rigoberto Florez, Jan 23 2020 *)
  • PARI
    Vec(1/(1+2*x-x^2+x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 26 2012
    
  • Sage
    def A077986_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return ( 1/(1+2*x-x^2+x^3) ).list()
    A077986_list(30) # G. C. Greubel, Jun 25 2019
    

Formula

a(n) = (-1)^n * A077939(n). - Joerg Arndt, Sep 30 2012
a(n) = -2*a(n-1) + a(n-2) - a(n-3), with a(0)=1, a(1)=-2, a(2)=5. - Harvey P. Dale, Feb 14 2014

A276225 a(n+3) = 2*a(n+2) + a(n+1) + a(n) with a(0)=3, a(1)=2, a(2)=6.

Original entry on oeis.org

3, 2, 6, 17, 42, 107, 273, 695, 1770, 4508, 11481, 29240, 74469, 189659, 483027, 1230182, 3133050, 7979309, 20321850, 51756059, 131813277, 335704463, 854978262, 2177474264, 5545631253, 14123715032, 35970535581, 91610417447, 233315085507, 594211124042, 1513347751038, 3854221711625, 9816002298330
Offset: 0

Views

Author

G. C. Greubel, Aug 24 2016

Keywords

Comments

Also the number of maximal independent vertex sets (and minimal vertex covers) on the 2n-crossed prism graph. - Eric W. Weisstein, Jun 15 2017
Also the number of irredundant sets in the n-sun graph. - Eric W. Weisstein, Aug 07 2017
Let {x,y,z} be the simple roots of P(x) = x^3 + u*x^2 + v*x + w. For n>=0, let p(n) = x^n/((x-y)(x-z)) + y^n/((y-x)(y-z)) + z^n/((z-x)(z-y)), q(n) = x^n + y^n + z^n. Then for n >= 0, q(n) = 3*p(n+2) + 2*u*p(n+1) + v*p(n). In this case, P(x) = x^3 - 2*x^2 - x - 1, q(n) = a(n), p(n) = A077939(n). - Kai Wang, Apr 15 2020
Also the number of tilings of a bracelet of length n with two colors of squares and one color of domino and tromino. - Greg Dresden and Arnim Kuchhal, Aug 05 2024

Crossrefs

Programs

  • Magma
    I:=[3,2,6]; [n le 3 select I[n] else 2*Self(n-1)+ Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 25 2016
    
  • Maple
    f:= gfun:-rectoproc({a(n+3) = 2*a(n+2) + a(n+1) + a(n), a(0)=3, a(1)=2, a(2)=6},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Aug 29 2016
  • Mathematica
    LinearRecurrence[{2, 1, 1}, {3, 2, 6}, 50]
    CoefficientList[Series[(3 - 4 x - x^2)/(1 - 2 x - x^2 - x^3), {x, 0, 32}], x] (* Michael De Vlieger, Aug 25 2016 *)
    Table[RootSum[-1 - #1 - 2 #1^2 + #1^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, Jun 15 2017 *)
  • PARI
    Vec((3-4*x-x^2)/(1-2*x-x^2-x^3) + O(x^99)) \\ Altug Alkan, Aug 25 2016

Formula

Let p = (4*(61 + 9*sqrt(29)))^(1/3), q = (4*(61 - 9*sqrt(29)))^(1/3), and x = (1/6)*(4 + p + q) then x^n = (1/6)*(2*a(n) + A276226(n)*(p + q) + A077939(n-1)*(p^2 + q^2)).
G.f.: (3 - 4*x - x^2)/(1 - 2*x - x^2 - x^3).
a(n) = b^n + c^n + d^n, where (b, c, d) are the three roots of the cubic equation x^3 = 2*x^2 + x + 1.
a(n) = 3*A077939(n+2) - 4*A077939(n+1) - A077939(n). - Kai Wang, Apr 15 2020

A077849 Expansion of (1-x)^(-1)/(1 - 2*x - x^2 - x^3).

Original entry on oeis.org

1, 3, 8, 21, 54, 138, 352, 897, 2285, 5820, 14823, 37752, 96148, 244872, 623645, 1588311, 4045140, 10302237, 26237926, 66823230, 170186624, 433434405, 1103878665, 2811378360, 7160069791, 18235396608, 46442241368, 118279949136, 301237536249, 767197263003
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Partial sums of A077939.

Programs

  • Maple
    A077939 := proc(n) if n< 0 then 0; else coeftayl( 1/(1-2*x-x^2-x^3) ,x=0,n) ; end if; end proc:
    A077849 := proc(n) (-1+4*A077939(n)+2*A077939(n-1)+A077939(n-2))/3 ; end proc:
    seq(A077849(n),n=0..20) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-2x-x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,-1,0,-1},{1,3,8,21},40] (* Harvey P. Dale, Nov 01 2016 *)
  • PARI
    Vec((1-x)^(-1)/(1-2*x-x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

A104580 Tribonacci convolution triangle.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 7, 12, 9, 4, 1, 13, 26, 25, 14, 5, 1, 24, 56, 63, 44, 20, 6, 1, 44, 118, 153, 125, 70, 27, 7, 1, 81, 244, 359, 336, 220, 104, 35, 8, 1, 149, 499, 819, 864, 646, 357, 147, 44, 9, 1, 274, 1010, 1830, 2144, 1800, 1134, 546, 200, 54, 10, 1
Offset: 0

Views

Author

Paul Barry, Mar 16 2005

Keywords

Examples

			Rows begin
  {1},
  {1,1},
  {2,2,1},
  {4,5,3,1},
  {7,12,9,4,1},
   ...
		

Crossrefs

First column is A000073(n+2). Row sums are A077939. Diagonal sums are A002478.

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> A000073(n+1)); # Peter Luschny, Oct 19 2022
  • Maxima
    trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
    create_list(sum(binomial(i+k,k)*trinomial(i,n-k-i),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 15 2011 */

Formula

Riordan array (1/(1-x-x^2-x^3), x/(1-x-x^2-x^3)).
From Paul Barry, Jun 02 2009: (Start)
T(n,m) = T'(n-1,m-1) + T'(n-1,m) + T'(n-2,m) + T'(n-3,m), where T'(n,m) = T(n,m) for n >= 0 and 0 <= m <= n and T'(n,m) = 0 otherwise. (End)
T(n,k) = Sum_{i=0..n-k} binomial(i+k,k)*A027907(i,n-k-i). - Emanuele Munarini, Mar 15 2011

A186575 Expansion of (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3) in powers of x.

Original entry on oeis.org

1, 3, 10, 15, 31, 66, 127, 255, 514, 1023, 2047, 4098, 8191, 16383, 32770, 65535, 131071, 262146, 524287, 1048575, 2097154, 4194303, 8388607, 16777218, 33554431, 67108863, 134217730, 268435455, 536870911, 1073741826, 2147483647, 4294967295
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 23 2011

Keywords

Comments

From Kai Wang, May 23 2020: (Start)
Let f(t) = t^3 + u*t^2 + v*t + w and {x,y,z} be the simple roots of f(t).
For n >= 0, let p(n) = x^n/((x-y)*(x-z)) + y^n/((y-x)*(y-z)) + z^n/((z-x)*(z-y)) and q(n) = x^n + y^n + z^n.
Then for n >= 0, q(n) = 3*p(n+2) + 2*u*p(n+1) + v*p(n).
In this case, f(t) = t^3 - t^2 - t - 2. q(n) = 3*p(n+2) - 2*p(n+1) - p(n).
p(n) = {0, 0, 1, 1, 2, 5, 9,...}, q(n) = {3, 1, 3, 10, 15, 31,...}.
a(n) = q(n+1), A077939(n) = p(n+2). (End)

Examples

			G.f. = 1 + 3*x + 10*x^2 + 15*x^3 + 31*x^4 + 66*x^5 + 127*x^6 + 255*x^7 + ...
		

Crossrefs

Cf. A099837.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3))); // Marius A. Burtea, Jan 31 2020
  • Mathematica
    CoefficientList[Series[(1+2x+6x^2)/(1-x-x^2-2x^3),{x,0,40}],x]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    Vec((1 + 2*x + 6*x^2) / ((1 - 2*x)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, May 03 2019
    
  • PARI
    polsym(polrecip(1 - x - x^2 - 2*x^3),44)[^1] \\ Joerg Arndt, Jun 23 2020
    

Formula

a(n+1) = n*Sum_{k=1..n} Sum_{j=n-3*k..k} 2^(k-j)*binomial(j,n-3*k+2*j)*binomial(k,j)/k.
G.f.: [log(1/(1 - x - x^2 - 2*x^3))]', (x + x^2 + 2*x^3)^k = Sum_{n>=k} Sum_{j=n-3*k..k} 2^(k-j)*binomial(j,n-3*k+2*j)*binomial(k,j)*x^n (see link).
a(n) = 2^(n+1) + A099837(n+1). - R. J. Mathar, Mar 18 2011
a(n) = a(n-1) + a(n-2) + 2*a(n-3) for n>2. - Colin Barker, May 03 2019
From Kai Wang, May 23 2020: (Start)
a(n) = 3*A077947(n+1) - 2*A077947(n) - A077947(n-1).
A077947(n) = (-8*a(n+3) + 27*a(n+2) - a(n+1))/147. (End)

Extensions

More terms from Harvey P. Dale, Mar 14 2011

A102036 Triangle, read by rows, where the terms are generated by the rule: T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-3,k-1), with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 9, 15, 7, 1, 1, 12, 33, 28, 9, 1, 1, 15, 60, 81, 45, 11, 1, 1, 18, 96, 189, 161, 66, 13, 1, 1, 21, 141, 378, 459, 281, 91, 15, 1, 1, 24, 195, 675, 1107, 946, 449, 120, 17, 1, 1, 27, 258, 1107, 2349, 2673, 1742, 673, 153, 19, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 30 2004

Keywords

Comments

Row sums form A077939. This sequence was inspired by Luke Hanna.
Diagonal sums are A000078(n+3). - Philippe Deléham, Feb 16 2014
Riordan array (1/(1-x), x*(1+x+x^2)/(1-x)). - Philippe Deléham, Feb 16 2014

Examples

			Generated by adding preceding terms in the triangle at positions that form the letter 'L':
T(n,k) =
T(n-3,k-1) +
T(n-2,k-1) +
T(n-1,k-1) + T(n-1,k).
Rows begin:
  [1],
  [1,  1],
  [1,  3,   1],
  [1,  6,   5,   1],
  [1,  9,  15,   7,   1],
  [1, 12,  33,  28,   9,   1],
  [1, 15,  60,  81,  45,  11,  1],
  [1, 18,  96, 189, 161,  66, 13,  1],
  [1, 21, 141, 378, 459, 281, 91, 15, 1], ...
		

Crossrefs

Programs

  • Magma
    [[(&+[Binomial(n-m,k)*(&+[Binomial(j,m-j)*Binomial(k,j):j in [0..k]]): m in [0..n-k]]): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Dec 11 2018
    
  • Maple
    T:=(n,k)->add(add((binomial(j,m-j)*binomial(k,j))*binomial(n-m,k),j=0..k),m=0..n-k): seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Dec 11 2018
  • Mathematica
    T[n_, k_] := If[n < k || k < 0, 0, If[n == 0, 1, T[n - 1, k] + T[n - 1, k - 1] + T[n - 2, k - 1] + T[n - 3, k - 1]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 07 2018 *)
    Table[Sum[Binomial[n-m, k]*Sum[Binomial[j, m-j]*Binomial[k, j], {j, 0, k}], {m, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 11 2018 *)
  • Maxima
    T(n,k):=sum((sum(binomial(j,m-j)*binomial(k,j),j,0,k))*binomial(n-m,k),m,0,n-k); /* Vladimir Kruchinin, Apr 21 2015 */
    
  • PARI
    {T(n,k)=if(n
    				
  • Sage
    [[sum(binomial(n-m,k)*sum(binomial(j,m-j)*binomial(k,j) for j in (0..k)) for m in (0..n-k)) for k in (0..n)] for n in range(15)] # G. C. Greubel, Dec 11 2018

Formula

G.f.: 1/(1-y-x*(1+y+y^2)). - Vladimir Kruchinin, Apr 21 2015
T(n,k) = Sum_{m=0..(n-k)} (Sum_{j=0..k} C(j,m-j)*C(k,j))*C(n-m,k). - Vladimir Kruchinin, Apr 21 2015
From Werner Schulte, Dec 07 2018: (Start)
G.f. of column k: Sum_{n>=0} T(n+k,k) * x^n = (1+x+x^2)^k / (1-x)^(k+1) = (1-x^3)^k / (1-x)^(2*k+1).
Let k >= 0 be some fixed integer and a_k(n) be multiplicative with a_k(p^e) = T(e+k,k) for prime p and e >= 0. Then we have the Dirichlet g.f.: Sum{n>0} a_k(n) / n^s = (zeta(s))^(2*k+1) / (zeta(3*s))^k. (End)

A121574 Riordan array (1/(1-2*x), x*(1+x)/(1-2*x)).

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 16, 8, 1, 16, 44, 37, 11, 1, 32, 112, 134, 67, 14, 1, 64, 272, 424, 305, 106, 17, 1, 128, 640, 1232, 1168, 584, 154, 20, 1, 256, 1472, 3376, 3992, 2641, 998, 211, 23, 1, 512, 3328, 8864, 12592, 10442, 5221, 1574, 277, 26, 1
Offset: 0

Views

Author

Paul Barry, Aug 08 2006

Keywords

Comments

Row sums are A006190(n+1); diagonal sums are A077939.
Inverse is A121575.
A generalized Delannoy number triangle.
Antidiagonal sums are A002478. - Philippe Deléham, Nov 10 2011.
From Peter Bala, Feb 07 2024: (Start)
The following remarks assume the row indexing starts at n = 1.
The sequence of row polynomials R(n,x), beginning R(1,x) = 1, R(2,x) = 2 + x, R(3,x) = 4 + 5*x + x^2 , ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd( R(n,x), R(m,x)) = R(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the polynomial sequence {R(n,x): n >= 1} is a divisibility sequence; that is, if n divides m then R(n,x) divides R(m,x) in Z[x]. (End)

Examples

			Triangle begins
   1;
   2,   1;
   4,   5,   1;
   8,  16,   8,   1;
  16,  44,  37,  11,   1;
  32, 112, 134,  67,  14,  1;
  64, 272, 424, 305, 106, 17, 1;
		

Crossrefs

Cf. Diagonals: A000012, A016789, A080855, A000079, A053220.

Programs

  • GAP
    T:=Flat(List([0..9],n->List([0..n],k->Sum([0..n-k],j->Binomial(k,j)*Binomial(n-j,k)*2^(n-k-j))))); # Muniru A Asiru, Nov 02 2018
  • Magma
    [[(&+[ Binomial(k, j)*Binomial(n-j, k)*2^(n-k-j): j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
    
  • Maple
    T:=(n,k)->add(binomial(k,j)*binomial(n-j,k)*2^(n-k-j),j=0..n-k): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    Table[Sum[Binomial[k, j] Binomial[n-j, k] 2^(n-k-j), {j, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0, n-k, binomial(k, j)* binomial(n-j, k)*2^(n-k-j)), ", "))) \\ G. C. Greubel, Nov 02 2018
    

Formula

Number array T(n,k) = Sum_{j=0..n-k} C(k,j)*C(n-j,k)*2^(n-k-j).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1). - Philippe Deléham, Nov 10 2011
Recurrence for row polynomials (with row indexing starting at n = 1): R(n,x) = (x + 2)*R(n-1,x) + x*R(n-2,x) with R(1,x) = 1 and R(2,x) = x + 2. - Peter Bala, Feb 07 2024

A109545 a(n) = 2*a(n-1) + a(n-2) + a(n-3).

Original entry on oeis.org

1, 1, 2, 6, 15, 38, 97, 247, 629, 1602, 4080, 10391, 26464, 67399, 171653, 437169, 1113390, 2835602, 7221763, 18392518, 46842401, 119299083, 303833085, 773807654, 1970747476, 5019135691, 12782826512, 32555536191, 82913034585
Offset: 0

Views

Author

Roger L. Bagula, Jun 20 2005

Keywords

Programs

  • Mathematica
    a = 2; b = -1; M = {{0, 1, 0, 0, 0}, { a - 2, a - 2, a - 2 - b, a - 2 - b, 0}, {1, 1, 1, 1, 0}, {0, 1, 1, 0, 0}, {0, 0, 0, 1, 1}} v[1] = {1, 1, 1, 1, 1} v[n_] := v[n] = M.v[n - 1] a0 = Table[Abs[v[n][[1]]], {n, 1, 50}]
    LinearRecurrence[{2,1,1},{1,1,2},30] (* Harvey P. Dale, Aug 05 2015 *)
    Lucas := 1 + x (1 + 2 x)/(1 - x - x^2); (* InvertTransform defined in A052987 *)
    InvertTransform[Lucas, 28] (* Peter Luschny, Jan 10 2019 *)

Formula

lim_{n-> infinity} a(n)/a(n-1)= 2.54682...
G.f.: (1-x-x^2)/(1-2*x-x^2-x^3). [Sep 28 2009]
a(n) = A077939(n)-A116413(n-1).
G.f.: (-1+x+x^2)/(-1+2*x+x^2+x^3). a(n) = A077997(n)-A077939(n-2). [From R. J. Mathar, Sep 27 2009]

Extensions

Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
Showing 1-10 of 15 results. Next