A089068
a(n) = a(n-1)+a(n-2)+a(n-3)+2 with a(0)=0, a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 0, 1, 3, 6, 12, 23, 43, 80, 148, 273, 503, 926, 1704, 3135, 5767, 10608, 19512, 35889, 66011, 121414, 223316, 410743, 755475, 1389536, 2555756, 4700769, 8646063, 15902590, 29249424, 53798079, 98950095, 181997600, 334745776, 615693473
Offset: 0
-
Join[{a=0,b=0,c=1},Table[d=a+b+c+2;a=b;b=c;c=d,{n,50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
RecurrenceTable[{a[0]==a[1]==0,a[2]==1,a[n]==a[n-1]+a[n-2]+a[n-3]+2}, a[n],{n,40}] (* or *) LinearRecurrence[{2,0,0,-1},{0,0,1,3},40] (* Harvey P. Dale, Sep 19 2011 *)
Definition based on arbitrarily set floating-point precision removed by
R. J. Mathar, Sep 30 2010
A103142
a(n) = 2*a(n-1) + a(n-2) + a(n-3) + a(n-4), with a(0)=1, a(1)=2, a(3)=5, a(4)=13.
Original entry on oeis.org
1, 2, 5, 13, 34, 88, 228, 591, 1532, 3971, 10293, 26680, 69156, 179256, 464641, 1204374, 3121801, 8091873, 20974562, 54367172, 140922580, 365278767, 946821848, 2454212215, 6361447625, 16489208080, 42740897848, 110786663616, 287164880785, 744346531114
Offset: 0
-
a:=[1,2,5,13];; for n in [5..40] do a[n]:=2*a[n-1]+a[n-2]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Feb 12 2020
-
I:=[1,2,5,13]; [n le 4 select I[n] else 2*Self(n-1)+Self(n-2)+Self(n-3) +Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 05 2012
-
m:=40; S:=series(1/(1-2*x-x^2-x^3-x^4), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 12 2020
-
LinearRecurrence[{2,1,1,1}, {1,2,5,13}, 40] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
-
Vec(1/(1-2*x-x^2-x^3-x^4)+O(x^40)) \\ Charles R Greathouse IV, Jun 20 2011
-
def A103142_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-x^2-x^3-x^4) ).list()
A103142_list(40) # G. C. Greubel, Feb 12 2020
Deleted certain dangerous or potentially dangerous links. -
N. J. A. Sloane, Jan 30 2021
A077986
Expansion of 1/(1 + 2*x - x^2 + x^3).
Original entry on oeis.org
1, -2, 5, -13, 33, -84, 214, -545, 1388, -3535, 9003, -22929, 58396, -148724, 378773, -964666, 2456829, -6257097, 15935689, -40585304, 103363394, -263247781, 670444260, -1707499695, 4348691431, -11075326817, 28206844760, -71837707768, 182957587113, -465959726754
Offset: 0
-
a:=[1,-2,5];; for n in [4..30] do a[n]:=-2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jun 25 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1+2*x-x^2+x^3) )); // G. C. Greubel, Jun 25 2019
-
m:=30; S:=series(1/(1+2*x-x^2+x^3), x, m+1): seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Feb 26 2020
-
CoefficientList[Series[1/(1+2x-x^2+x^3),{x,0,30}],x] (* or *) LinearRecurrence[ {-2,1,-1},{1,-2,5},30] (* Harvey P. Dale, Feb 14 2014 *)
b[n_]:= b[n]= If[n<3, n, 2*b[n-1] +b[n-2] +b[n-3]]; Table[(-1)^n*b[n+1], {n, 0, 30}] (* Rigoberto Florez, Jan 23 2020 *)
-
Vec(1/(1+2*x-x^2+x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 26 2012
-
def A077986_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return ( 1/(1+2*x-x^2+x^3) ).list()
A077986_list(30) # G. C. Greubel, Jun 25 2019
A276225
a(n+3) = 2*a(n+2) + a(n+1) + a(n) with a(0)=3, a(1)=2, a(2)=6.
Original entry on oeis.org
3, 2, 6, 17, 42, 107, 273, 695, 1770, 4508, 11481, 29240, 74469, 189659, 483027, 1230182, 3133050, 7979309, 20321850, 51756059, 131813277, 335704463, 854978262, 2177474264, 5545631253, 14123715032, 35970535581, 91610417447, 233315085507, 594211124042, 1513347751038, 3854221711625, 9816002298330
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..2450
- Eric Weisstein's World of Mathematics, Crossed Prism Graph
- Eric Weisstein's World of Mathematics, Irredundant Set
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
- Eric Weisstein's World of Mathematics, Minimal Vertex Cover
- Eric Weisstein's World of Mathematics, Sun Graph
- Index entries for linear recurrences with constant coefficients, signature (2,1,1).
-
I:=[3,2,6]; [n le 3 select I[n] else 2*Self(n-1)+ Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 25 2016
-
f:= gfun:-rectoproc({a(n+3) = 2*a(n+2) + a(n+1) + a(n), a(0)=3, a(1)=2, a(2)=6},a(n),remember):
map(f, [$0..40]); # Robert Israel, Aug 29 2016
-
LinearRecurrence[{2, 1, 1}, {3, 2, 6}, 50]
CoefficientList[Series[(3 - 4 x - x^2)/(1 - 2 x - x^2 - x^3), {x, 0, 32}], x] (* Michael De Vlieger, Aug 25 2016 *)
Table[RootSum[-1 - #1 - 2 #1^2 + #1^3 &, #^n &], {n, 20}] (* Eric W. Weisstein, Jun 15 2017 *)
-
Vec((3-4*x-x^2)/(1-2*x-x^2-x^3) + O(x^99)) \\ Altug Alkan, Aug 25 2016
A077849
Expansion of (1-x)^(-1)/(1 - 2*x - x^2 - x^3).
Original entry on oeis.org
1, 3, 8, 21, 54, 138, 352, 897, 2285, 5820, 14823, 37752, 96148, 244872, 623645, 1588311, 4045140, 10302237, 26237926, 66823230, 170186624, 433434405, 1103878665, 2811378360, 7160069791, 18235396608, 46442241368, 118279949136, 301237536249, 767197263003
Offset: 0
-
A077939 := proc(n) if n< 0 then 0; else coeftayl( 1/(1-2*x-x^2-x^3) ,x=0,n) ; end if; end proc:
A077849 := proc(n) (-1+4*A077939(n)+2*A077939(n-1)+A077939(n-2))/3 ; end proc:
seq(A077849(n),n=0..20) ; # R. J. Mathar, Mar 22 2011
-
CoefficientList[Series[(1-x)^(-1)/(1-2x-x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,-1,0,-1},{1,3,8,21},40] (* Harvey P. Dale, Nov 01 2016 *)
-
Vec((1-x)^(-1)/(1-2*x-x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
A104580
Tribonacci convolution triangle.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 7, 12, 9, 4, 1, 13, 26, 25, 14, 5, 1, 24, 56, 63, 44, 20, 6, 1, 44, 118, 153, 125, 70, 27, 7, 1, 81, 244, 359, 336, 220, 104, 35, 8, 1, 149, 499, 819, 864, 646, 357, 147, 44, 9, 1, 274, 1010, 1830, 2144, 1800, 1134, 546, 200, 54, 10, 1
Offset: 0
Rows begin
{1},
{1,1},
{2,2,1},
{4,5,3,1},
{7,12,9,4,1},
...
-
# Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
PMatrix(10, n -> A000073(n+1)); # Peter Luschny, Oct 19 2022
-
trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k);
create_list(sum(binomial(i+k,k)*trinomial(i,n-k-i),i,0,n-k),n,0,8,k,0,n); /* Emanuele Munarini, Mar 15 2011 */
A186575
Expansion of (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3) in powers of x.
Original entry on oeis.org
1, 3, 10, 15, 31, 66, 127, 255, 514, 1023, 2047, 4098, 8191, 16383, 32770, 65535, 131071, 262146, 524287, 1048575, 2097154, 4194303, 8388607, 16777218, 33554431, 67108863, 134217730, 268435455, 536870911, 1073741826, 2147483647, 4294967295
Offset: 0
G.f. = 1 + 3*x + 10*x^2 + 15*x^3 + 31*x^4 + 66*x^5 + 127*x^6 + 255*x^7 + ...
- Colin Barker, Table of n, a(n) for n = 0..1000
- Gamaliel Cerda-Morales, A note on Modified Third-order Jacobsthal numbers, arXiv:1905.00725 [math.CO], 2019. See pp. 3-4.
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- Evren Eyican Polatlı and Yüksel Soykan, On generalized third-order Jacobsthal numbers, Asian Res. J. of Math. (2021) Vol. 17, No. 2, 1-19, Article No. ARJOM.66022.
- Kai Wang, Closed Forms and Generating Functions For Power Sums, 2020.
- Index entries for linear recurrences with constant coefficients, signature (1,1,2).
-
R:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (1 + 2*x + 6*x^2)/(1 - x - x^2 - 2*x^3))); // Marius A. Burtea, Jan 31 2020
-
CoefficientList[Series[(1+2x+6x^2)/(1-x-x^2-2x^3),{x,0,40}],x] (* Harvey P. Dale, Mar 14 2011 *)
-
Vec((1 + 2*x + 6*x^2) / ((1 - 2*x)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, May 03 2019
-
polsym(polrecip(1 - x - x^2 - 2*x^3),44)[^1] \\ Joerg Arndt, Jun 23 2020
A102036
Triangle, read by rows, where the terms are generated by the rule: T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + T(n-3,k-1), with T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 9, 15, 7, 1, 1, 12, 33, 28, 9, 1, 1, 15, 60, 81, 45, 11, 1, 1, 18, 96, 189, 161, 66, 13, 1, 1, 21, 141, 378, 459, 281, 91, 15, 1, 1, 24, 195, 675, 1107, 946, 449, 120, 17, 1, 1, 27, 258, 1107, 2349, 2673, 1742, 673, 153, 19, 1
Offset: 0
Generated by adding preceding terms in the triangle at positions that form the letter 'L':
T(n,k) =
T(n-3,k-1) +
T(n-2,k-1) +
T(n-1,k-1) + T(n-1,k).
Rows begin:
[1],
[1, 1],
[1, 3, 1],
[1, 6, 5, 1],
[1, 9, 15, 7, 1],
[1, 12, 33, 28, 9, 1],
[1, 15, 60, 81, 45, 11, 1],
[1, 18, 96, 189, 161, 66, 13, 1],
[1, 21, 141, 378, 459, 281, 91, 15, 1], ...
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Kuhapatanakul, Kantaphon; Anantakitpaisal, Pornpawee The k-nacci triangle and applications. Cogent Math. 4, Article ID 1333293, 13 p. (2017).
- J. L. Ramírez, V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38.
-
[[(&+[Binomial(n-m,k)*(&+[Binomial(j,m-j)*Binomial(k,j):j in [0..k]]): m in [0..n-k]]): k in [0..n]]: n in [0..15]]; // G. C. Greubel, Dec 11 2018
-
T:=(n,k)->add(add((binomial(j,m-j)*binomial(k,j))*binomial(n-m,k),j=0..k),m=0..n-k): seq(seq(T(n,k),k=0..n),n=0..10); # Muniru A Asiru, Dec 11 2018
-
T[n_, k_] := If[n < k || k < 0, 0, If[n == 0, 1, T[n - 1, k] + T[n - 1, k - 1] + T[n - 2, k - 1] + T[n - 3, k - 1]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 07 2018 *)
Table[Sum[Binomial[n-m, k]*Sum[Binomial[j, m-j]*Binomial[k, j], {j, 0, k}], {m, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 11 2018 *)
-
T(n,k):=sum((sum(binomial(j,m-j)*binomial(k,j),j,0,k))*binomial(n-m,k),m,0,n-k); /* Vladimir Kruchinin, Apr 21 2015 */
-
{T(n,k)=if(n
-
[[sum(binomial(n-m,k)*sum(binomial(j,m-j)*binomial(k,j) for j in (0..k)) for m in (0..n-k)) for k in (0..n)] for n in range(15)] # G. C. Greubel, Dec 11 2018
A121574
Riordan array (1/(1-2*x), x*(1+x)/(1-2*x)).
Original entry on oeis.org
1, 2, 1, 4, 5, 1, 8, 16, 8, 1, 16, 44, 37, 11, 1, 32, 112, 134, 67, 14, 1, 64, 272, 424, 305, 106, 17, 1, 128, 640, 1232, 1168, 584, 154, 20, 1, 256, 1472, 3376, 3992, 2641, 998, 211, 23, 1, 512, 3328, 8864, 12592, 10442, 5221, 1574, 277, 26, 1
Offset: 0
Triangle begins
1;
2, 1;
4, 5, 1;
8, 16, 8, 1;
16, 44, 37, 11, 1;
32, 112, 134, 67, 14, 1;
64, 272, 424, 305, 106, 17, 1;
-
T:=Flat(List([0..9],n->List([0..n],k->Sum([0..n-k],j->Binomial(k,j)*Binomial(n-j,k)*2^(n-k-j))))); # Muniru A Asiru, Nov 02 2018
-
[[(&+[ Binomial(k, j)*Binomial(n-j, k)*2^(n-k-j): j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
-
T:=(n,k)->add(binomial(k,j)*binomial(n-j,k)*2^(n-k-j),j=0..n-k): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Nov 02 2018
-
Table[Sum[Binomial[k, j] Binomial[n-j, k] 2^(n-k-j), {j, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 02 2018 *)
-
for(n=0,10, for(k=0,n, print1(sum(j=0, n-k, binomial(k, j)* binomial(n-j, k)*2^(n-k-j)), ", "))) \\ G. C. Greubel, Nov 02 2018
A109545
a(n) = 2*a(n-1) + a(n-2) + a(n-3).
Original entry on oeis.org
1, 1, 2, 6, 15, 38, 97, 247, 629, 1602, 4080, 10391, 26464, 67399, 171653, 437169, 1113390, 2835602, 7221763, 18392518, 46842401, 119299083, 303833085, 773807654, 1970747476, 5019135691, 12782826512, 32555536191, 82913034585
Offset: 0
-
a = 2; b = -1; M = {{0, 1, 0, 0, 0}, { a - 2, a - 2, a - 2 - b, a - 2 - b, 0}, {1, 1, 1, 1, 0}, {0, 1, 1, 0, 0}, {0, 0, 0, 1, 1}} v[1] = {1, 1, 1, 1, 1} v[n_] := v[n] = M.v[n - 1] a0 = Table[Abs[v[n][[1]]], {n, 1, 50}]
LinearRecurrence[{2,1,1},{1,1,2},30] (* Harvey P. Dale, Aug 05 2015 *)
Lucas := 1 + x (1 + 2 x)/(1 - x - x^2); (* InvertTransform defined in A052987 *)
InvertTransform[Lucas, 28] (* Peter Luschny, Jan 10 2019 *)
Definition replaced by recurrence by the Associate Editors of the OEIS, Sep 28 2009
Showing 1-10 of 15 results.
Comments