A078366 A Chebyshev S-sequence with Diophantine property.
1, 17, 288, 4879, 82655, 1400256, 23721697, 401868593, 6808044384, 115334885935, 1953885016511, 33100710394752, 560758191694273, 9499788548407889, 160935647131239840, 2726406212682669391, 46187969968474139807, 782469083251377707328, 13255786445304946884769
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..800
- A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=17, q=-1.
- Tanya Khovanova, Recursive Sequences
- Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), lhs, m=19.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (17,-1).
Programs
-
GAP
a:=[1,17,288];; for n in [4..20] do a[n]:=17*a[n-1]-a[n-2]; od; a; # G. C. Greubel, May 25 2019
-
Magma
I:=[1, 17, 288]; [n le 3 select I[n] else 17*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
-
Mathematica
CoefficientList[Series[1/(1 - 17 x + x^2), {x, 0, 20}], x] (* Vincenzo Librandi, Dec 24 2012 *) LinearRecurrence[{17,-1},{1,17},20] (* Harvey P. Dale, Aug 02 2018 *)
-
PARI
my(x='x+O('x^20)); Vec(1/(1-17*x+x^2)) \\ G. C. Greubel, May 25 2019
-
Sage
[lucas_number1(n,17,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = 17*a(n-1) - a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = S(2*n+1, sqrt(19))/sqrt(19) = S(n, 17), where S(n, x) = U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (17+sqrt(285))/2 and am = (17-sqrt(285))/2.
G.f.: 1/(1-17*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*16^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = (1/15)*(15 + sqrt(285)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = (1/34)*(15 + sqrt(285)). - Peter Bala, Dec 23 2012
For n >= 1, a(n) = U(n-1,13/2), where U(k,x) represents Chebyshev polynomial of the second order. - Milan Janjic, Jan 23 2015
a(n) = sqrt((A078367(n+1)^2 - 4)/285), n>=0, (Pell equation d=285, +4).
E.g.f.: exp(17*x/2)*(sqrt(285)*cosh(sqrt(285)*x/2) + 17*sinh(sqrt(285)*x/2))/sqrt(285). - Stefano Spezia, Aug 19 2023
Comments