cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A097831 Partial sums of Chebyshev sequence S(n,17)= U(n,17/2)=A078366(n).

Original entry on oeis.org

1, 18, 306, 5185, 87840, 1488096, 25209793, 427078386, 7235122770, 122570008705, 2076455025216, 35177165419968, 595935357114241, 10095723905522130, 171031371036761970, 2897437583719431361, 49085407552193571168
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Crossrefs

Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Mathematica
    LinearRecurrence[{18,-18,1},{1,18,306},20] (* Harvey P. Dale, Nov 20 2022 *)

Formula

a(n) = sum(S(k, 17), k=0..n) with S(k, 17) = U(k, 17/2) = A078366(k) Chebyshev's polynomials of the second kind.
G.f.: 1/((1-x)*(1-17*x+x^2)) = 1/(1-18*x+18*x^2-x^3).
a(n) = 18*a(n-1)-18*a(n-2)+a(n-3), n>=2, a(-1)=0, a(0)=1, a(1)=18.
a(n) = 17*a(n-1)-a(n-2)+1, n>=1, a(-1)=0, a(0)=1.
a(n) = (S(n+1, 17) - S(n, 17) -1)/15.

A097781 Chebyshev polynomials S(n,27) with Diophantine property.

Original entry on oeis.org

1, 27, 728, 19629, 529255, 14270256, 384767657, 10374456483, 279725557384, 7542215592885, 203360095450511, 5483180361570912, 147842509666964113, 3986264580646460139, 107481301167787459640, 2898008866949614950141
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

All positive integer solutions of Pell equation b(n)^2 - 725*a(n)^2 = +4 together with b(n)=A090248(n+1), n>=0. Note that D=725=29*5^2 is not squarefree.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 27's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,26}. - Milan Janjic, Jan 26 2015

Examples

			(x,y) = (27;1), (727;27), (19602;728), ... give the positive integer solutions to x^2 - 29*(5*y)^2 =+4.
		

Crossrefs

Programs

  • Magma
    I:=[1, 27, 728]; [n le 3 select I[n] else 27*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Dec 24 2012
  • Maple
    with (combinat):seq(fibonacci(2*n, 5)/5, n=1..16); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Join[{a=1,b=27},Table[c=27*b-a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2011 *)
    CoefficientList[Series[1/(1 - 27 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 24 2012 *)
  • Sage
    [lucas_number1(n,27,1) for n in range(1,20)] # Zerinvary Lajos, Jun 25 2008
    

Formula

a(n) = S(n, 27) = U(n, 27/2) = S(2*n+1, sqrt(29))/sqrt(29) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = 27*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=27; a(-1)=0.
a(n) = (ap^(n+1) - am^(n+1))/(ap-am) with ap = (27+5*sqrt(29))/2 and am = (27-5*sqrt(29))/2.
G.f.: 1/(1-27*x+x^2).
a(n) = Sum_{k, 0<=k<=n} A101950(n,k)*26^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/5*(5 + sqrt(29)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 5/54*(5 + sqrt(29)). - Peter Bala, Dec 23 2012

A078367 A Chebyshev T-sequence with Diophantine property.

Original entry on oeis.org

2, 17, 287, 4862, 82367, 1395377, 23639042, 400468337, 6784322687, 114933017342, 1947076972127, 32985375508817, 558804306677762, 9466687838013137, 160374888939545567, 2716906424134261502, 46027034321342899967, 779742677038695037937, 13209598475336472744962
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation a^2 - 285*b^2 =+4 with companion sequence b(n)=A078366(n-1), n>=1.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).

Crossrefs

Cf. A077428, A078355 (Pell +4 equations).

Programs

  • Mathematica
    a[0] = 2; a[1] = 17; a[n_] := 17a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *)
  • PARI
    a(n)=if(n<0,0,subst(2*poltchebi(n),x,17/2))
    
  • Sage
    [lucas_number2(n,17,1) for n in range(0,20)] # Zerinvary Lajos, Jun 26 2008

Formula

a(n) = 17*a(n-1)-a(n-2), n >= 1; a(-1)=17, a(0)=2.
a(n) = sqrt(4 + 285*A078366(n-1)^2), n>=1, (Pell equation d=285, +4).
a(n) = S(n, 17) - S(n-2, 17) = 2*T(n, 17/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 17)=A078366(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
G.f.: (2-17*x)/(1-17*x+x^2).
a(n) = ap^n + am^n, with ap := (17+sqrt(285))/2 and am := (17-sqrt(285))/2.
E.g.f.: 2*exp(17*x/2)*cosh(sqrt(285)*x/2). - Stefano Spezia, Aug 19 2023

Extensions

More terms from Stefano Spezia, Aug 19 2023

A078368 A Chebyshev S-sequence with Diophantine property.

Original entry on oeis.org

1, 19, 360, 6821, 129239, 2448720, 46396441, 879083659, 16656193080, 315588584861, 5979526919279, 113295422881440, 2146633507828081, 40672741225852099, 770635449783361800, 14601400804658022101
Offset: 0

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

a(n) gives the general (positive integer) solution of the Pell equation b^2 - 357*a^2 =+4 with companion sequence b(n)=A078369(n+1), n>=0.
This is the m=21 member of the m-family of sequences S(n,m-2) = S(2*n+1,sqrt(m))/sqrt(m). The m=4..20 (nonnegative) sequences are: A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190, A004191, A078362, A007655, A078364, A077412, A078366 and A049660. The m=1..3 (signed) sequences are A049347, A056594, A010892.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 19's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=2, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,18}. Milan Janjic, Jan 25 2015

Crossrefs

a(n) = sqrt((A078369(n+1)^2 - 4)/357), n>=0, (Pell equation d=357, +4).
Cf. A077428, A078355 (Pell +4 equations).

Programs

Formula

a(n) = 19*a(n-1)-a(n-2), n >= 1; a(-1)=0, a(0)=1.
a(n) = (ap^(n+1)-am^(n+1))/(ap-am) with ap = (19+sqrt(357))/2 and am = (19-sqrt(357))/2.
a(n) = S(2*n+1, sqrt(21))/sqrt(21) = S(n, 19); S(n, x) := U(n, x/2), Chebyshev polynomials of the 2nd kind, A049310.
G.f.: 1/(1-19*x+x^2).
a(n) = Sum_{k=0..n} A101950(n,k)*18^k. - Philippe Deléham, Feb 10 2012
Product {n >= 0} (1 + 1/a(n)) = 1/17*(17 + sqrt(357)). - Peter Bala, Dec 23 2012
Product {n >= 1} (1 - 1/a(n)) = 1/38*(17 + sqrt(357)). - Peter Bala, Dec 23 2012

A161595 The list of the A values in the common solutions to the 2 equations 15*k+1=A^2, 19*k+1=B^2.

Original entry on oeis.org

1, 16, 271, 4591, 77776, 1317601, 22321441, 378146896, 6406175791, 108526841551, 1838550130576, 31146825378241, 527657481299521, 8939030356713616, 151435858582831951, 2565470565551429551, 43461563755791470416, 736281113282903567521, 12473317362053569177441
Offset: 1

Views

Author

Paul Weisenhorn, Jun 14 2009

Keywords

Comments

The 2 equations are equivalent to the Pell equation x^2- 285*y^2=1,
with x=(285*k+17)/2 and y=A*B/2, case C=15 in A160682.
Also: the first differences of A078366.
Positive values of x (or y) satisfying x^2 - 17xy + y^2 + 15 = 0. - Colin Barker, Feb 14 2014

Crossrefs

Cf. A078366, A160682, A161599 (sequence of B), A161583 (sequence of k).
Cf. similar sequences listed in A238379.

Programs

  • Maple
    t:=0: for a from 1 to 1000000 do b:=sqrt((19*a^2-4)/15):
    if (trunc(b)=b) then t:=t+1: n:=(a^2-1)/15: print(t,a,b,n): end if: end do:
  • Mathematica
    Rest[CoefficientList[Series[x (1-x)/(1-17x+x^2),{x,0,40}],x]] (* or *) LinearRecurrence[{17,-1},{1,16},20] (* Harvey P. Dale, Oct 12 2012 *)
  • PARI
    Vec(x*(1-x)/(1-17*x+x^2) + O(x^100)) \\ Colin Barker, Feb 14 2014

Formula

a(t+2) = 17*a(t+1)-a(t).
a(t) = ((285+15*w)*((17+w)/2)^(t-1)+(285-15*w)*((17-w)/2)^(t-1))/570, where w=sqrt(285).
a(t) = ceiling of ((285+15*w)*((17+w)/2)^(t-1))/570.
G.f.: x*(1-x)/(1-17*x+x^2).
a(n) = 17*a(n-1)-a(n-2). - Colin Barker, Feb 14 2014

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009

A092499 Chebyshev polynomials S(n-1,21) with Diophantine property.

Original entry on oeis.org

0, 1, 21, 440, 9219, 193159, 4047120, 84796361, 1776676461, 37225409320, 779956919259, 16341869895119, 342399310878240, 7174043658547921, 150312517518628101, 3149388824232642200, 65986852791366858099
Offset: 0

Views

Author

Rainer Rosenthal, Apr 05 2004

Keywords

Comments

Sequence R_21: Starts with 0,1,21 and satisfies A*C=B^2-1 for successive A,B,C.
The natural numbers a(n)=n satisfy the recurrence a(n-1)*a(n+1)=a(n)^2-1. Let R_r denote the sequence starting with 0,1,r and with this recurrence. We see that R_2 = "the natural numbers" and we find R_3 = A001906. These R_r form a "family" of sequences, which coincides with the m-family (r=m-2, n -> n+1) provided by Wolfdieter Lang (see A078368). This sequence R_21 is strongly related to A041833, which gives the denominators in the continued fraction of sqrt(437).
All positive integer solutions of Pell equation b(n)^2 - 437*a(n)^2 = +4 together with b(n)=A097777(n), n>=0.
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 21's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,20}. - Milan Janjic, Jan 25 2015

Examples

			a(3)=440 because a(1)*440 = a(2)^2-1.
		

Crossrefs

Cf. R_3=A001906, R_4=A001353, R_5=A004254, R_6=A001109, R_7=A004187, R_8=A001090, R_9=A018913, R_10=A004189, R_11=A004190, R_12=A004191, R_13=A078362, R_14=A007655, R_15=A078364, R_16=A077412, R_17=A078366, R_18=A049660, R_19=A078368, R_20=A075843, R_21=this, sequence, R_22=A077421. See also A041219 and A041917.

Programs

  • Mathematica
    LinearRecurrence[{21,-1},{0,1},30] (* Harvey P. Dale, Apr 23 2015 *)
  • Sage
    [lucas_number1(n,21,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008

Formula

a(0)=0, a(1)=1, a(2)=21 and a(n-1)*a(n+1) = a(n)^2-1
a(n) = S(n-1, 21)=U(n-1, 21/2) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n) = S(2*n-1, sqrt(23))/sqrt(23), n>=1.
a(n) = 21*a(n-1)-a(n-2), n >= 1; a(0)=0, a(1)=1.
a(n) = (ap^n-am^n)/(ap-am) with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.
G.f.: x/(1-21*x+x^2).
a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*20^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = 1/19*(19 + sqrt(437)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = 1/42*(19 + sqrt(437)). - Peter Bala, Dec 23 2012

Extensions

Extension, Chebyshev and Pell comments from Wolfdieter Lang, Aug 31 2004
Corrected by T. D. Noe, Nov 07 2006
Showing 1-6 of 6 results.