A078522 Numbers k such that (k+1)*(2*k+1) is a perfect square.
0, 24, 840, 28560, 970224, 32959080, 1119638520, 38034750624, 1292061882720, 43892069261880, 1491038293021224, 50651409893459760, 1720656898084610640, 58451683124983302024, 1985636569351347658200, 67453191674820837076800, 2291422880374557112953024
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..650
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Crossrefs
Programs
-
GAP
a:=[0,24];; for n in [3..20] do a[n]:=34*a[n-1]-a[n-2]+24; od; a; # G. C. Greubel, Jan 13 2020
-
Magma
I:=[0,24]; [n le 2 select I[n] else 34*Self(n-1) - Self(n-2) + 24: n in [1..20]]; // Marius A. Burtea, Sep 15 2019
-
Maple
seq(coeff(series(24*x^2/((1-x)*(1-34*x+x^2)), x, n+1), x, n), n = 1..20); # G. C. Greubel, Jan 13 2020
-
Mathematica
RecurrenceTable[{a[1]==0, a[2]==24, a[n]==34a[n-1] -a[n-2] +24}, a[n], {n,20}] Drop[CoefficientList[Series[24*x^2/((1-x)*(1-34*x+x^2)), {x,0,20}], x], 1] (* Indranil Ghosh, Mar 15 2017 *) Table[3*(ChebyshevT[n, 17] -16*ChebyshevU[n-1, 17] -1)/4, {n,20}] (* G. C. Greubel, Jan 13 2020 *)
-
PARI
concat(0, Vec(24*x^2/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ Colin Barker, Nov 21 2016
-
Sage
def A078522_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 24*x^2/((1-x)*(1-34*x+x^2)) ).list() a=A078522_list(20); a[1:] # G. C. Greubel, Jan 13 2020
Formula
From Benoit Cloitre, Jan 19 2003: (Start)
a(1) = 0, a(2) = 24; for n > 2, a(n) = 34*a(n-1) - a(n-2) + 24.
a(n) = floor(A*B^n), where A = (3 + 2*sqrt(2))/8 and B = 17 + 12*sqrt(2).
a(n) = A008844(n) - 1. (End)
From R. J. Mathar, Sep 21 2011: (Start)
G.f.: 24*x^2/( (1-x)*(1-34*x+x^2) ).
a(n) = 24*A029546(n-2). (End)
a(n) = (3/4)*(ChebyshevT(n, 17) - 16*Chebyshev(n-1, 17) - 1). - G. C. Greubel, Jan 13 2020
From Amiram Eldar, Dec 02 2024: (Start)
Sum_{n>=2} 1/a(n) = (3 - 2*sqrt(2))/4. (End)
Extensions
Edited by Bruno Berselli, Nov 17 2016
Comments