cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078789 Expansion of (1-4*x+2*x^2)/(1-7*x+13*x^2-4*x^3).

Original entry on oeis.org

1, 3, 10, 35, 127, 474, 1807, 6995, 27370, 107883, 427351, 1698458, 6765175, 26985675, 107746282, 430470899, 1720537327, 6878624730, 27505271455, 109996928003, 439924466026, 1759532283963, 7037695641415, 28149647662490, 112595619434887, 450374698997499
Offset: 0

Views

Author

Michael Somos, Dec 03 2002

Keywords

Comments

Number of walks of length 2*n+1 between two adjacent vertices in the cycle graph C_10. - Herbert Kociemba, Jul 02 2004
Also, with offset 1, the cogrowth sequence of the 20-element group D10 = . - Sean A. Irvine, Nov 20 2024

Crossrefs

Programs

  • Magma
    I:=[1,3,10]; [n le 3 select I[n] else 7*Self(n-1)-13*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 18 2018
  • Mathematica
    LinearRecurrence[{7, -13, 4}, {1, 3, 10}, 25] (* Vincenzo Librandi, Dec 18 2018 *)
    CoefficientList[Series[(1-4x+2x^2)/(1-7x+13x^2-4x^3),{x,0,40}],x] (* Harvey P. Dale, Feb 17 2024 *)
  • PARI
    {a(n) = polcoeff( (1 - 4*x + 2*x^2) / (1 - 7*x + 13*x^2 - 4*x^3) + x * O(x^n), n)}
    
  • PARI
    {a(n) = sum( k=-n\5, n\5, binomial(2*n + 1, n+1 + 5*k))}
    

Formula

G.f.: (1 - 4*x + 2*x^2) / (1 - 7*x + 13*x^2 - 4*x^3).
a(5*n + 3) = A049016(10*n + 3), a(5*n + 4) = A049016(10*n + 5).
From Herbert Kociemba, Jul 02 2004: (Start)
a(n) = [4^(n+1) + (sqrt(5)+3)*phi^(2n) - (sqrt(5)-3)*phi^(-2n)]/10, where phi is the golden ratio (1+sqrt(5))/2.
a(n) = 7a(n-1)-13a(n-2)+4a(n-3). (End)
a(n) = Sum_{k= -floor(n/5)..floor(n/5)} binomial(2*n,n+5*k)/2 = ((3+sqrt(5))^n + (3-sqrt(5))^n + 2^(3*n-1))/(5*2^n). - Mircea Merca, Jan 28 2012
a(n) = (Lucas(2*n+2) + 2^(2*n+1))/5. - Greg Dresden, Jan 26 2023