A078812 Triangle read by rows: T(n, k) = binomial(n+k-1, 2*k-1).
1, 2, 1, 3, 4, 1, 4, 10, 6, 1, 5, 20, 21, 8, 1, 6, 35, 56, 36, 10, 1, 7, 56, 126, 120, 55, 12, 1, 8, 84, 252, 330, 220, 78, 14, 1, 9, 120, 462, 792, 715, 364, 105, 16, 1, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1, 11, 220, 1287, 3432, 5005, 4368, 2380, 816, 171, 20, 1
Offset: 0
Examples
Triangle begins, 1 <= k <= n: 1 2 1 3 4 1 4 10 6 1 5 20 21 8 1 6 35 56 36 10 1 7 56 126 120 55 12 1 8 84 252 330 220 78 14 1 From _Peter Bala_, Feb 11 2025: (Start) The array factorizes as an infinite product of lower triangular arrays: / 1 \ / 1 \ / 1 \ / 1 \ | 2 1 | | 2 1 | | 0 1 | | 0 1 | | 3 4 1 | = | 3 2 1 | | 0 2 1 | | 0 0 1 | ... | 4 10 6 1 | | 4 3 2 1 | | 0 3 2 1 | | 0 0 2 1 | | 5 20 21 8 1| | 5 4 3 2 1| | 0 4 3 2 1 | | 0 0 3 2 1 | |... | |... | |... | |... | Cf. A092276. (End)
Links
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- J.-P. Allouche and M. Mendès France, Stern-Brocot polynomials and power series, arXiv preprint arXiv:1202.0211 [math.NT], 2012. - From _N. J. A. Sloane_, May 10 2012
- Peter Bala, Factorisations of some Riordan arrays as infinite products
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Paul Barry, Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers, arXiv:2011.10827 [math.CO], 2020.
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014.
- Nour-Eddine Fahssi, On the combinatorics of exclusion in Haldane fractional statistics, arXiv:1808.00045 [cond-mat.stat-mech], 2018.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
- A. Laradji, and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
- Yidong Sun, Numerical triangles and several classical sequences, Fib. Quart. 43, no. 4, (2005) 359-370.
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k+1, 2*k+1) ))); # G. C. Greubel, Aug 01 2019
-
Haskell
a078812 n k = a078812_tabl !! n !! k a078812_row n = a078812_tabl !! n a078812_tabl = [1] : [2, 1] : f [1] [2, 1] where f us vs = ws : f vs ws where ws = zipWith (-) (zipWith (+) ([0] ++ vs) (map (* 2) vs ++ [0])) (us ++ [0, 0]) -- Reinhard Zumkeller, Dec 16 2013
-
Magma
/* As triangle */ [[Binomial(n+k-1, 2*k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Jun 01 2018
-
Maple
for n from 1 to 11 do seq(binomial(n+k-1,2*k-1),k=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Apr 09 2005 # Uses function PMatrix from A357368. Adds a row and column above and to the left. PMatrix(10, n -> n); # Peter Luschny, Oct 07 2022
-
Mathematica
(* First program *) u[1, x_]:= 1; v[1, x_]:= 1; z = 13; u[n_, x_]:= u[n-1, x] + x*v[n-1, x]; v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A085478 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A078812 *) (* Clark Kimberling, Feb 25 2012 *) (* Second program *) Table[Binomial[n+k+1, 2*k+1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
-
Maxima
T(n,m):=sum(binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)*binomial(n+1,m+k+1),k,0,n-m); /* Vladimir Kruchinin, Apr 13 2016 */
-
PARI
{T(n, k) = if( n<0, 0, binomial(n+k-1, 2*k-1))};
-
PARI
{T(n, k) = polcoeff( polcoeff( x*y / (1 - (2 + y) * x + x^2) + x * O(x^n), n), k)};
-
Sage
@cached_function def T(k,n): if k==n: return 1 if k==0: return 0 return sum(i*T(k-1,n-i) for i in (1..n-k+1)) A078812 = lambda n,k: T(k,n) [[A078812(n,k) for k in (1..n)] for n in (1..8)] # Peter Luschny, Mar 12 2016
-
Sage
[[binomial(n+k+1, 2*k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
Formula
G.f.: x*y / (1 - (2 + y)*x + x^2). To get row n, expand this in powers of x then expand the coefficient of x^n in increasing powers of y.
From Philippe Deléham, Feb 16 2004: (Start)
If indexing begins at 0 we have
T(n,k) = (n+k+1)!/((n-k)!*(2k+1))!.
T(n,k) = Sum_{j>=0} T(n-1-j, k-1)*(j+1) with T(n, 0) = n+1, T(n, k) = 0 if n < k.
T(n,k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j) with T(n,k) = 0 if k < 0, T(0, 0)=1 and T(0, k) = 0 for k > 0.
G.f. for the column k: Sum_{n>=0} T(n, k)*x^n = (x^k)/(1-x)^(2k+2).
Row sums: Sum_{k>=0} T(n, k) = A001906(n+1). (End)
Antidiagonal sums are A000079(n) = Sum_{k=0..floor(n/2)} binomial(n+k+1, n-k). - Paul Barry, Jun 21 2004
Riordan array (1/(1-x)^2, x/(1-x)^2). - Paul Barry, Oct 22 2006
T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + 2*T(n-1,k) - T(n-2,k). - Philippe Deléham, Jan 26 2010
For another version see A128908. - Philippe Deléham, Mar 27 2012
T(n,m) = Sum_{k=0..n-m} (binomial(2*k,n-m)*binomial(m+k,k)*(-1)^(n-m+k)* binomial(n+1,m+k+1)). - Vladimir Kruchinin, Apr 13 2016
T(n, k) = T(n-1, k) + (T(n-1, k-1) + T(n-2, k-1) + T(n-3, k-1) + ...) for k >= 2 with T(n, 1) = n. - Peter Bala, Feb 11 2025
From Peter Bala, May 04 2025: (Start)
With the column offset starting at 0, the n-th row polynomial B(n, x) = 1/sqrt(x + 4) * Chebyshev_U(2*n+1, (1/2)*sqrt(x + 4)) = (-1)^n * Chebyshev_U(n, -(1/2)*(x + 2)).
B(n, x) / Product_{k = 1..2*n} (1 + 1/B(k, x)) = b(n, x), the n-th row polynomial of A085478. (End)
Extensions
Edited by N. J. A. Sloane, Apr 28 2008
Comments