cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A079398 a(0)=0, a(1)=1, a(2)=1, a(3)=1, a(n) = a(n-3) + a(n-4) for n > 3.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 7, 8, 9, 12, 15, 17, 21, 27, 32, 38, 48, 59, 70, 86, 107, 129, 156, 193, 236, 285, 349, 429, 521, 634, 778, 950, 1155, 1412, 1728, 2105, 2567, 3140, 3833, 4672, 5707, 6973, 8505, 10379, 12680, 15478, 18884, 23059, 28158, 34362
Offset: 0

Views

Author

Benoit Cloitre, Feb 16 2003

Keywords

Comments

P(0)=P(1)=P(2)=P(3)=1, for m > 3: P(m) = P(m-3) + P(m-4) is the 3rd sequence in the series: Fibonacci sequence, Padovan sequence, ... The Padovan sequence (whose ratio of successive terms approaches the plastic constant) is similar to the Perrin sequence. - Jonathan Vos Post, Jan 23 2005
Binomial transform yields A079398 without the initial (0,1,1,1). - R. J. Mathar, Apr 09 2008
a(n+1) corresponds to the diagonal sums of "triangle": 1; 1; 1; 1,1; 1,1; 1,1; 1,2,1; 1,2,1; 1,2,1; 1,3,3,1; 1,3,3,1; 1,3,3,1; 1,4,6,4,1; ..., rows of Pascal's triangle (A007318) repeated three times. - Philippe Deléham, Dec 13 2008
a(n) is the number of pairs of rabbits living at month n with the following rules: a pair of rabbits born in month n begins to procreate in month n + 3, procreates again in month n + 4, and dies at the end of this month (each pair therefore gives birth to 2 pairs); warning! The first pair is born in month 2. - Robert FERREOL, Oct 24 2017

Crossrefs

Cf. A000931.

Programs

  • Mathematica
    CoefficientList[Series[x (1 + x + x^2)/(1 - x^3 - x^4), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 16 2014 *)
    LinearRecurrence[{0, 0, 1, 1}, {0, 1, 1, 1}, 60] (* Jean-François Alcover, Dec 05 2017 *)
    nxt[{a_,b_,c_,d_}]:={b,c,d,a+b}; NestList[nxt,{0,1,1,1},60][[;;,1]] (* Harvey P. Dale, Apr 27 2023 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,1,0,0]^n*[0;1;1;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(1+x+x^2)/(1-x^3-x^4))) \\ G. C. Greubel, Apr 30 2017

Formula

a(0)=0, a(1)=1, a(2)=1, a(3)=1, a(n) = a(n-3) + a(n-4) for n > 3. - Colin Barker, Sep 18 2013
From Paul Barry, Jul 06 2004: (Start)
a(n) = Sum_{k=0..floor((n-1)/2)} binomial(floor((n-k-1)/3), k) (offset 0).
a(n) = (Sum_{k=0..floor(n/2)} binomial(floor((n-k-1)/3), k))-0^n (offset 0). (End)
For n > 1, a(n) = P(n-2) where P(n) is defined by: P(0)=P(1)=P(2)=P(3)=1, for m > 3: P(m) = P(m-3) + P(m-4). - Jonathan Vos Post, Jan 23 2005
The same sequence may be constructed as follows: Let M = {{0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}}; v[1] = {1, 1, 1, 1}; v[n] = M.v[n - 1]. Then a(n) = v[n][[1]]. - Roger L. Bagula, Sep 16 2006
O.g.f.: -x^2*(1+x+x^2)/(-1+x^3+x^4). a(n) = A017817(n-1) + A017817(n-2) + A017817(n-3). - R. J. Mathar, Apr 09 2008

Extensions

Recurrence corrected by Colin Barker, Sep 18 2013